New learning discoveries about 372118-01-9

372118-01-9, 372118-01-9 Methyl 4,6-dichloropyridazine-3-carboxylate 17848322, apyridazine compound, is more and more widely used in various fields.

372118-01-9, Methyl 4,6-dichloropyridazine-3-carboxylate is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Into a 3-dram vial were charged tert-butyl 2-(morpholin-3- yl)acetate (1.2 equiv.), methyl 4,6-dichloropyridazine-3-carboxylate (1.0 equiv.) and DMF (0.3 M). To the mixture at room temperature was added DIEA (3.0 equiv). The mixture was agitated in heating block at 70 C. After 5 h, the mixture was concentrated in vacuo and the residue purified by flash chromatography (0-100% EtOAc/heptane) to afford the desired product methyl 4-(3 -(2-(tert-butoxy)-2-oxoethyl)morpholino)-6-chl oropyridazine3-carboxylate in 77% isolated yield. LCMS (m/z) (M+H) = 372.1, Rt = 1.25 mm.

372118-01-9, 372118-01-9 Methyl 4,6-dichloropyridazine-3-carboxylate 17848322, apyridazine compound, is more and more widely used in various fields.

Reference£º
Patent; NOVARTIS AG; AVERSA, Robert John; BURGER, Matthew T.; DILLON, Michael Patrick; DINEEN JR., Thomas A.; KARKI, Rajesh; RAMURTHY, Savithri; RAUNIYAR, Vivek; ROBINSON, Richard; SARVER, Patrick James; (374 pag.)WO2017/103824; (2017); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Downstream synthetic route of 187973-60-0

187973-60-0, 187973-60-0 6-Iodopyridazin-3-amine 10867834, apyridazine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.187973-60-0,6-Iodopyridazin-3-amine,as a common compound, the synthetic route is as follows.

General procedure: A 10 mL round-bottomed flask containing a magnetic stirbar was charged with CuI (0.1 mmol) followed by L-hydroxyproline (0.2 mmol),6-iodopyridazin-3-amine (1.3 mmol) and K3PO4 (3.0 mmol). The flask wasflushed with N2 and a solution of the appropriate amine (1.0 mmol) inanhydrous DMSO (1.5 mL) was then added. The mixture was stirred under N2at 50 C for 24 h. MeOH (5 mL) and H2O (5 mL) were added and the stirredmixture was neutralised by dropwise addition of AcOH. The resultant solidswere allowed to settle out and the supernatant solution added to the top of astrong cation exchange (SCX) column. The remaining solid was washed withfurther MeOH (5 mL), and the washings also added to the SCX column. Thesolution was allowed to elute slowly through the column, which was thenflushed with further MeOH. These MeOH washings were discarded. A 1 Msolution of NH3 in MeOH was flushed through until elution of the product wascomplete and the solvent was evaporated under reduced pressure to yield acrude material. Purification was done by flash silica chromatography, elutiongradient typically 0-10% MeOH in CH2Cl2. Relevant fractions were evaporatedto dryness to afford the desired product.

187973-60-0, 187973-60-0 6-Iodopyridazin-3-amine 10867834, apyridazine compound, is more and more widely used in various fields.

Reference£º
Article; Bethel, Paul A.; Roberts, Bryan; Bailey, Andrew; Tetrahedron Letters; vol. 55; 37; (2014); p. 5186 – 5190;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Some tips on 825633-94-1

The synthetic route of 825633-94-1 has been constantly updated, and we look forward to future research findings.

825633-94-1, 5-Iodo-2,3-dihydropyridazin-3-one is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

825633-94-1, [00214] Step 4: To a solution of 5-iodopyridazin-3(2H)-one (5 g, 23 mmol) in NJV- dimethylformamide (45 mL, 23 mmol) was sequentially added l-(bromomethyl)-4- methoxybenzene (4.5 g, 23 mmol) and K2C03 (3.4 g, 25 mmol). The mixture was stirred at ambient temperature under N2 atmosphere. After 48 hours, additional 1 -(bromomethyl)-4- methoxybenzene (450 mg, 0.1 equivalent) was added, and the mixture was stirred at ambient temperature for 4 more hours. The mixture was poured into ice water (100 mL) and extracted with EtOAc (3 X 75 mL). The combined organic layers were washed with 2% HC1 followed by brine. The organic layer was dried (MgS04), filtered and concentrated in vacuo. The residue obtained was triturated with EtOAc rhexane to provide the first batch of the product. Mother liquor was concentrated and triturated with CH3CN to provide the second batch of the product. The combined batches gave 5-iodo-2-(4-methoxybenzyl)pyridazin-3(2H)-one (6.2 g, 80% yield) as a solid.

The synthetic route of 825633-94-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; ARRAY BIOPHARMA INC.; GENENTECH, INC.; BLAKE, James, F.; COOK, Adam; GAUDINO, John; GUNAWARDANA, Indrani, W.; HICKEN, Erik, James; HUNT, Kevin, W.; LYON, Michael; METCALF, Andrew, T.; MOHR, Peter, J.; MORENO, David, A.; NEWHOUSE, Brad; REN, Li; SCHWARZ, Jacob; CHEN, Huifen; GAZZARD, Lewis; SCHMIDT, Jane; DO, Steve; WO2015/103137; (2015); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Some tips on 372118-01-9

The synthetic route of 372118-01-9 has been constantly updated, and we look forward to future research findings.

372118-01-9, Methyl 4,6-dichloropyridazine-3-carboxylate is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Compound 4,6-dichloropyridazine-3-carboxylic acid methyl ester 1a (20.7 g, 100 mmol),2,4-dimethoxybenzylamine (17.5 g, 105 mmol)And diisopropylethylamine (25.84 g, 200 mmol) were dissolved in acetonitrile (800 mL).After stirring at room temperature for 15 hours,The solvent was removed under reduced pressure, and the residue was dispersed in water (1 L).After stirring for 30 minutes, it was filtered. The filtered solid was washed with water (300 mL) and cold acetonitrile (300 mL) in this order.The target product 6-chloro-4-((2,4-dimethoxybenzyl) amino) pyridazine-3-carboxylic acid methyl ester 31a (26 g, white solid) was obtained,Yield: 76%., 372118-01-9

The synthetic route of 372118-01-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Beijing Nuochengjianhua Pharmaceutical Technology Co., Ltd.; Chen Xiangyang; Pang Yucheng; (142 pag.)CN110818641; (2020); A;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Some tips on 84956-71-8

The synthetic route of 84956-71-8 has been constantly updated, and we look forward to future research findings.

84956-71-8, 2-(tert-Butyl)-4,5-dichloropyridazin-3(2H)-one is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,84956-71-8

PREPARATION EXAMPLE 1 Preparation of 2-t-butyl-4-chloro-5-[4-(2-isopropylthioethoxy)-benzyloxy]-3(2H)-pyridazinone (Compound No. 310) In 15 ml of N,N-dimethylformamide were dissolved 1.2 g of 2-t-butyl-4,5-dichloro-3(2H)-pyridazinone and 1.2 g of p-(2-isopropylthioethoxy)benzyl alcohol, and then 0.31 g of powdery potassium hydroxide was added thereto. The resulting mixture was stirred overnight at room temperature, poured into water, extracted with diethyl ether, washed with water, dried over anhydrous sodium sulfate and then freed of the diethyl ether by distillation under reduced pressure. The resulting solid was recrystallized from n-hexane to obtain 1.2 g of the aimed compound, m.p. 82.0~84.5 C. 1 H-NMR (CDCl3, delta, TMS): 1.28 (3H, d, J=6.5 Hz), 1.62 (9H, s), 2.90 (2H, t, J=7.0 Hz), 2.90 (1H, dq, J=6.5 Hz), 4.12 (2H, t, J=7.0 Hz), 5.21 (2H, s), 6.85 (2H, d, J=8.4 Hz), 7.29 (2H, d, J=8.4 Hz), 7.69 (1H, s).

The synthetic route of 84956-71-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Nissan Chemical Industries, Ltd.; US4837217; (1989); A;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Brief introduction of 84956-71-8

As the paragraph descriping shows that 84956-71-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.84956-71-8,2-(tert-Butyl)-4,5-dichloropyridazin-3(2H)-one,as a common compound, the synthetic route is as follows.

84956-71-8, (1) Into 225 ml of a 3.0M diethyl ether solution of methyl magnesium bromide, 170 ml of an absolute ether solution of 74.40 g of 4,5-dichloro-2-tert-butyl-pyridazin-3-(2H)-one was dropwise added under cooling with ice at a temperature of from 5 to 10 C. After completion of the dropwise addition, the mixture was stirred at a temperature of from 5 to 10 C. for two hours. Then, 158 ml of 6N hydrochloric acid was added to the reaction solution, and then 600 ml of diethyl ether was added thereto for liquid separation. The ether layer was washed with a saturated sodium chloride aqueous solution and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the residue was subjected to silica gel column chromatography. From a fraction of n-hexane:ethyl acetate=9:1, 24.45 g of oily 2-tert-butyl-5-chloro-4-methylpyridazin-3-(2H)-one, was obtained.

As the paragraph descriping shows that 84956-71-8 is playing an increasingly important role.

Reference£º
Patent; Ishihara Sangyo Kaisha Ltd.; US5763439; (1998); A;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Analyzing the synthesis route of 372118-01-9

As the paragraph descriping shows that 372118-01-9 is playing an increasingly important role.

372118-01-9, Methyl 4,6-dichloropyridazine-3-carboxylate is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step 1 6-Chloro-4-(1-methyl-1H-pyrazol-3-ylamino)-pyridazine-3-carboxylic acid methyl ester 4,6-Dichloro-pyridazine-3-carboxylic acid methyl ester (165 mg, 0.8 mmol) and 1-methyl-1H-pyrazol-3-amine (81 mg, 0.837 mmol) were dissolved in of N-methylpyrrolidinone (3.2 mL). The reaction was heated at 110 C. for 2 h, then cooled and concentrated in vacuo. The residue was diluted with water and then extracted with ethyl acetate. The combined organic extracts were washed with brine, dried (sodium sulfate), filtered and concentrated in vacuo. Purification by chromatography (silica, 10 to 70% ethyl acetate in hexanes) gave 6-chloro-4-(1-methyl-1H-pyrazol-3-ylamino)-pyridazine-3-carboxylic acid methyl ester (69 mg, 32%) as a light brown solid. 1H NMR (300 MHz, CHLOROFORM-d) delta ppm 10.09 (br. s., 1H) 8.24 (s, 1H) 7.34 (d, J=2.3 Hz, 1H) 6.02 (d, J=2.3 Hz, 1H) 4.08 (s, 3H) 3.91 (s, 3H); LCMS (EI/CI) m/z: 268 [M+H]., 372118-01-9

As the paragraph descriping shows that 372118-01-9 is playing an increasingly important role.

Reference£º
Patent; Hoffman-La Roche Inc.; Hermann, Johannes Cornelius; Kennedy-Smith, Joshua; Lucas, Matthew C.; Padilla, Fernando; Soth, Michael; US2013/178478; (2013); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 17973-86-3

17973-86-3, 17973-86-3 3,6-Dibromopyridazine 248852, apyridazine compound, is more and more widely used in various fields.

17973-86-3, 3,6-Dibromopyridazine is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Ethyl 2-(6-(6-bromopyridazin-3-yl)-l-oxo-2-(2,2,2-trifluoroethyl)-l,2,3,4- tetrahydronaphthalen-2-vDacetate (22A) : Pd(dppf)Cl2 (0.154 g, 0.21 mmol) was added to a solution of 3,6-dibromo pyridazine (1 g, 4.2 mmol) in 16 mL of 1,4 dioxane-H20 (3: 1) mixture under argon atmosphere, followed by cesium carbonate (4.1 1 g, 12.61 mmol) and 1H (1.85 g, 4.2 mmol). The mixture was degassed for 5 min. The reaction mixture was refluxed for 2 h, solvent was removed under reduced pressure, and the residue was partitioned between ethyl acetate and water. The separated organic layer was dried over sodium sulfate and filtered, and the filtrate was concentrated under reduced pressure. The crude product was purified by flash chromatography using 10% ethyl acetate in hexane to afford the title compound (0.8 g, 40%) as a solid. lU NMR (300 MHz, CDC13): delta 8.19 (d, J= 8.1 Hz, 1H), 8.06 (s, 1H), 7.90 (dd, J = 2.1 Hz, J2 = 8.7 Hz, 1H), 7.77 (s, 2H), 4.14 (q, J= 6.9 Hz, 2H), 3.16 (t, J= 6.0 Hz, 2H), 2.95 – 2.82 (m, 2H), 2.69 – 2.57 (m, 2H), 2.53 – 2.32 (m, 2H), 1.24 (t, J= 7.2 Hz, 3H). ESI-MS m/z: 471 (M+H)+.

17973-86-3, 17973-86-3 3,6-Dibromopyridazine 248852, apyridazine compound, is more and more widely used in various fields.

Reference£º
Patent; GLAXOSMITHKLINE LLC; CHEUNG, Mui; TANGIRALA, Raghuram, S.; WO2014/74761; (2014); A2;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Downstream synthetic route of 187973-60-0

187973-60-0 6-Iodopyridazin-3-amine 10867834, apyridazine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.187973-60-0,6-Iodopyridazin-3-amine,as a common compound, the synthetic route is as follows.

187973-60-0, To a solution of compound 3 (1.00 g, 4.52 mmol) in CH2Cl2(15 mL) was added triethylamine (1.57 mL, 11.31 mmol) and themixture was stirred at 0 C to allow addition of di-tert-butyldicarbonate (1.18 g, 5.43 mmol). The resulting solution was stirredat room temperature overnight (16 h). The solvents were evaporated under reduced pressure. A purification by silica columnchromatography using CH2Cl2 as eluent gave the desired derivative17 (1.13 g, 78%) as a beige solid.Mp 171.7 C. 1H NMR (300 MHz, DMSO-d6) d 7.55 (d, 1H,J 9.3 Hz, H4), 6.56 (d, 1H, J 9.3 Hz, H5), 6.55 (bs, 1H, NH), 3.40 (s,9H, 3 CH3).

187973-60-0 6-Iodopyridazin-3-amine 10867834, apyridazine compound, is more and more widely used in various fields.

Reference£º
Article; Moine, Esperance; Dimier-Poisson, Isabelle; Enguehard-Gueiffier, Cecile; Loge, Cedric; Penichon, Melanie; Moire, Nathalie; Delehouze, Claire; Foll-Josselin, Beatrice; Ruchaud, Sandrine; Bach, Stephane; Gueiffier, Alain; Debierre-Grockiego, Francoise; Denevault-Sabourin, Caroline; European Journal of Medicinal Chemistry; vol. 105; (2015); p. 80 – 105;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 5788-58-9

5788-58-9 4,5-Dibromopyridazin-3(2H)-one 236181, apyridazine compound, is more and more widely used in various fields.

5788-58-9, 4,5-Dibromopyridazin-3(2H)-one is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a stirred solution of 1-[(2-tert-butylphenyl)methyl]piperazin-2-one (200 mg, 0.81 mmol, 1 equiv.) and 4,5-dibromo-2,3-dihydropyridazin-3-one (235.9 mg, 930 mmol, 1.2 equiv.) in DMA(5 mL, 53.78 mmol, 66.238 equiv.) was added DIEA(209.9 mg, 1.62 mmol, 2 equiv.) in portions at room temperature under nitrogen atmosphere. The resulting mixture was stirred for overnight at 100 degrees C under nitrogen atmosphere. The reaction was monitored by LCMS. The residue/crude product was purified by reverse phase flash with the following conditions (Column: C1880g; Mobile Phase A: Water(10 mmol/L NH4HCO3), Mobile Phase B: MeCN; Flow rate: 40mL/min; Gradient: 40% B to 60% B in 15 min; 254 nm; Rt: 6.12 min) to afford 4- bromo-5-(3-oxo-4-[[2-(trifluoromethyl)phenyl]methyl]piperazin-1-yl)-2,3-dihydropyridazin-3- one (150 mg, 44.92%) as a light yellow solid, 5788-58-9

5788-58-9 4,5-Dibromopyridazin-3(2H)-one 236181, apyridazine compound, is more and more widely used in various fields.

Reference£º
Patent; GOLDFINCH BIO, INC.; YU, Maolin; DANIELS, Matthew, H.; HARMANGE, Jean-christophe, P.; TIBBITTS, Thomas, T.; LEDEBOER, Mark, W.; WALSH, Liron; MUNDEL, Peter, H.; MALOJCIC, Goran; (860 pag.)WO2019/55966; (2019); A2;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem