Downstream synthetic route of 1834-27-1

1834-27-1, 1834-27-1 6-Chloro-4-methylpyridazin-3(2H)-one 164886, apyridazine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1834-27-1,6-Chloro-4-methylpyridazin-3(2H)-one,as a common compound, the synthetic route is as follows.

To a mixture containing 6-chloro-4-methylpyridazin-3(2H)-one (250 mg, 1.729 mmol) and K2CO3 (598 mg, 4.32 mmol) in DMF (2.5 mL) was added ethyl iodide (0.210 mL, 2.59 mmol). The reaction mixture was stirred at room temperature for 22 h. The reaction mixture was diluted with water (25 mL) and extracted with ethyl acetate (3×40 mL). The combined extracts were washed with 10% LiCl (2×20 mL) and saturated aqueous NaCl solution (1×20 mL), dried (Na2S04), filtered and concentrated to afford crude product. The crude product was dissolved in a small amount of DCM and charged to an ISCO silica gel 12 g ISCO column which was eluted over a 10 min gradient with 0%-100% hexanes/ethyl acetate to afford 6-chloro-2-ethyl-4-methylpyridazin-3(2H)-one (250 mg, 1.448 mmol, 84% yield), m/z (173, M+H). LCMS MH+: 173. HPLC Ret. Time 0.70 min. Method Bl . NMR (400 MHz, CHLOROFORM-d) delta 7.06 (q, J=1.2 Hz, 1H), 4.17 (q, J=7.2 Hz, 2H), 2.21 (d, J= 2 Hz, 3H), 1.37 (t, J=7.2 Hz, 3H).

1834-27-1, 1834-27-1 6-Chloro-4-methylpyridazin-3(2H)-one 164886, apyridazine compound, is more and more widely used in various fields.

Reference:
Patent; BRISTOL-MYERS SQUIBB COMPANY; DYCKMAN, Alaric J.; DODD, Dharmpal S.; HAQUE, Tasir Shamsul; WHITELEY, Brian K.; GILMORE, John L.; (192 pag.)WO2019/28302; (2019); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 29049-45-4

29049-45-4 6-Chloropyridazin-4-amine 14099144, apyridazine compound, is more and more widely used in various fields.

29049-45-4, 6-Chloropyridazin-4-amine is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

29049-45-4, Into a 50-mL round-bottom flask, was placed 6-chloropyridazin-4-amine (570 mg, 4.40 mmol, 1 equiv), dioxane (20 mL), CH3NH2-H20 (4 mL). The resulting solution was stirred overnight at 140 C. The resulting mixture was concentrated under vacuum. The crude product was purified by Flash-Prep-HPLC A. This resulted in 320 mg (59%) of the title compound as a yellow solid. Analytical Data: LC-MS: (ES, m/z): RT= 0.187 min, LCMS 45, m/z = 125 [M+l].

29049-45-4 6-Chloropyridazin-4-amine 14099144, apyridazine compound, is more and more widely used in various fields.

Reference:
Patent; EPIZYME, INC.; CAMPBELL, John Emmerson; DUNCAN, Kenneth William; FOLEY, Megan Alene; HARVEY, Darren Martin; KUNTZ, Kevin Wayne; MILLS, James Edward John; MUNCHHOF, Michael John; (586 pag.)WO2017/181177; (2017); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 29049-45-4

29049-45-4 6-Chloropyridazin-4-amine 14099144, apyridazine compound, is more and more widely used in various fields.

29049-45-4, 6-Chloropyridazin-4-amine is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

[0512] Compound 487A was prepared by an analogous method as that of 473B, except using compound 3-chloro-5-aminopyridazine in place of compound 2-bromo-6-aminopyridine., 29049-45-4

29049-45-4 6-Chloropyridazin-4-amine 14099144, apyridazine compound, is more and more widely used in various fields.

Reference:
Patent; Das, Jagabandhu; Padmanabha, Ramesh; Chen, Ping; Norris, Derek J.; Doweyko, Arthur M.P.; Barrish, Joel C.; Wityak, John; Lombardo, Louis J.; Lee, Francis Y.F.; US2004/54186; (2004); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Some tips on 35857-93-3

35857-93-3, The synthetic route of 35857-93-3 has been constantly updated, and we look forward to future research findings.

35857-93-3, 3,6-Dichloropyridazine-4-carbonitrile is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a stirred solution of 3,6-dichloropyridazine-4-carbonitrile (2.00 g, 11.50 mmol, 1.00 equiv) in methanol (20 mL) was added hydrazine hydrate (1.15 g, 22.97 mmol, 2.00 equiv) dropwise at room temperature. The resulting solution was heated at 60 C for 1 hour. After completion the mixture was concentrated under vacuum and the residue was diluted with ethyl acetate. Theprecipitates were collected by filtration to give the title compound (1.8 g, 92%) as a light yellow solid. LC-MS (ES, m/z): 170 [M+H].

35857-93-3, The synthetic route of 35857-93-3 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; F. HOFFMANN-LA ROCHE AG; GENENTECH, INC.; BLAQUIERE, Nicole; BURCH, Jason; CASTANEDO, Georgette; FENG, Jianwen A.; HU, Baihua; STABEN, Steven; WU, Guosheng; YUEN, Po-wai; WO2015/25025; (2015); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Analyzing the synthesis route of 29049-45-4

29049-45-4, As the paragraph descriping shows that 29049-45-4 is playing an increasingly important role.

29049-45-4, 6-Chloropyridazin-4-amine is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a stirred suspension of potassium tert-butoxide (3.90 g, 34.7 mmol) in 1,4-Dioxane (50 mL) was added a mixture of (,S)-(2,2-dimethyl-l,3-dioxolan-4-yl)methanol (2.75 g, 20.84 mmol) at 0 C and the reaction mixture was stirred at 25 C for 1 h. under Nitrogen atmosphere, then 6-chloropyridazin-4-amine (1.5 g, 1 1.58 mmol) was added to the reaction mixture and the resulted reaction mixture was stirred at 1 10 C for 16 h. (TLC System: Neat Ethyl acetate, Rf: 0.3). The reaction mixture was poured in to ice cold water (40 ml) and extracted with EtOAc (2×80 mL). The combined organic layer was washed with brine solution (50 mL), dried over anhydrous Na2S04, filtered and concentrated under reduced pressure to get crude compound. The crude material was purified by flash column chromatography (Neutral alumina, Eluent: 65% Ethyl acetate in Pet ether) to afford the desired product (,S)-6-((2,2-dimethyl-l,3-dioxolan-4-yl)methoxy)pyridazin-4-amine (1.0 g, 4.28 mmol, 37.0 % yield) as a white solid. LCMS (m/z): 226.20 [M+H]+.

29049-45-4, As the paragraph descriping shows that 29049-45-4 is playing an increasingly important role.

Reference:
Patent; GLAXOSMITHKLINE INTELLECTUAL PROPERTY (NO.2) LIMITED; ELLIS, James Lamond; EVANS, Karen Anderson; FOX, Ryan Michael; MILLER, William Henry; SEEFELD, Mark Andrew; (766 pag.)WO2016/79709; (2016); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Simple exploration of 65202-58-6

As the paragraph descriping shows that 65202-58-6 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.65202-58-6,3-Bromo-6-methylpyridazine,as a common compound, the synthetic route is as follows.,65202-58-6

EXAMPLE 5 Following a procedure similar to that of Example 3, 81 millimoles of 6-methyl-3-bromopyridazine was combined with 16 mL DIPEA and 163 mmoles of 4-hydroxypiperidine and heated to 120 for 16 hours to obtain 6-methyl-3-(4-hydroxy-1-piperdinyl)pyridazine (Formula IV: Y=bond, R=CH3) in 24% yield. 6.8 Mmols of the latter and 7.4 mmoles of 2-methyl-5-(4-hydroxy-3,5-dimethyl phenyl)-2H-tetrazole (Formula III: R2 =R3 =R4 =CH3) were reacted with equimolar amounts of DEAD and TPP essentially as described above in Example 1c.

As the paragraph descriping shows that 65202-58-6 is playing an increasingly important role.

Reference:
Patent; Sterling Winthrop Inc.; US5242924; (1993); A;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Simple exploration of 57041-95-9

The synthetic route of 57041-95-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.57041-95-9,6-Aminopyridazin-3(2H)-one,as a common compound, the synthetic route is as follows.

57041-95-9, A mixture of 6-aminopyridazin-3-ol (2 g, 18.00 mmol), NaOH (0.720 g, 18.00 mmol) and Mel (1.126 mL, 18.00 mmol) was stirred for 2.5 hr at 85 00 under Ar. The reaction mixture was concentrated. The crude material was purified by silica gel column chromatography (NH3 1% ICH2CI2/MeOH 4-7%) to afford the title product (538 mg, 4.30 mmol, 24 % yield) as a yellowsolid. tR: 0.25 mm (LC-MS 2); ESI-MS: 126 [M+H] (LC-MS 2); R = 0.36 (CH2CI2/MeOH 9:1).

The synthetic route of 57041-95-9 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; NOVARTIS AG; BLANK, Jutta; BORDAS, Vincent; COTESTA, Simona; GUAGNANO, Vito; RUEEGER, Heinrich; VAUPEL, Andrea; WO2014/191896; (2014); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Downstream synthetic route of 1352925-63-3

As the paragraph descriping shows that 1352925-63-3 is playing an increasingly important role.

1352925-63-3, Ethyl 4,6-dihydroxypyridazine-3-carboxylate is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a 5000 ml rb flask, ethyl 4,6-dihydroxypyridazine-3-carboxylate (200 g, 1086 mmol) was dissolved in THF (2000 mL), methanol (1000 mL) and water (800 mL). LiOH (137 g, 3258 mmol) was added slowly at rt and stirred at rt for 3-4 hr. The starting material was gone. The solvent was removed at 50 C. under reduced pressure to afford a yellow solid. The solid was acidified with aqueous HCl solution (400 ml) (1:1 ratio) at 0 C. and stirred at rt for 30-40 minutes. The solid was filtered and washed with water. It was then dried under vacuum for 1-2 hr. This solid was taken into 300 ml of methanol:DCM (2:8) and stirred at rt for 20-25 minutes. The mixture was filtered and the solid was washed with methanol and dried under vacuum for 1 hr. The desired product was obtained as a yellow solid, 4,6-dihydroxypyridazine-3-carboxylic acid (153 g, 951 mmol, 88% yield). MS (M+1) m/z: 156.9 (MH+). LC retention time 0.31 min [A]. 1H NMR (400 MHz, deuterium oxide) delta 6.00-5.34 (m, 1H), 4.75 (s, 7H), 1352925-63-3

As the paragraph descriping shows that 1352925-63-3 is playing an increasingly important role.

Reference:
Patent; BRISTOL-MYERS SQUIBB COMPANY; Liu, Chunjian; Yang, Michael G.; Xiao, Zili; Chen, Ling; Moslin, Ryan M.; Tokarski, John S.; Weinstein, David S.; (84 pag.)US2019/152948; (2019); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Brief introduction of 1834-27-1

As the paragraph descriping shows that 1834-27-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1834-27-1,6-Chloro-4-methylpyridazin-3(2H)-one,as a common compound, the synthetic route is as follows.

A solution of 6-chloro-4-methylpyridazin-3-ol (Intermediate X17; 0.50 g, 3.4 mmol) in DCM (20 mL) was treated with (5-(methoxycarbonyl)-2-methylphenyl)boronic acid (1.0 g, 5.2 mmol), Cu(OAc)2 (1.2 g, 6.9 mmol), pyridine 1-oxide (327 mg, 3.44 mmol) and pyridine (1.1 g, 14 mmol). The resulting mixture was stirred at ambient temperature open to the atmosphere for one overnight. The reaction mixture was diluted with DCM (100 mL) and washed with water (2 x 30 mL). The organic extracts were dried over anhydrous Na2SO4(), filtered and concentrated under vacuum. The crude residue was purified by silica gel flash chromatography (2-55% EtOAc/hexane as the gradient eluent) to afford the title compound (2.99 g, 99% yield). MS (apci) m/z = 293.0 (M+H), 295.0 [(M+H)+2] (with Cl pattern)., 1834-27-1

As the paragraph descriping shows that 1834-27-1 is playing an increasingly important role.

Reference:
Patent; ARRAY BIOPHARMA, INC.; ANDREWS, Steven W.; BLAKE, James F.; COOK, Adam; GUNAWARDANA, Indrani W.; HUNT, Kevin W.; METCALF, Andrew T.; MORENO, David; REN, Li; TANG, Tony P.; (263 pag.)WO2017/70708; (2017); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

S News The Shocking Revelation of 932-22-9

The potential utility of systematic synthetic strategy will be applicable to efficient generations of chemical libraries of compounds to find ‘hit’ molecules.Read on for other articles about 932-22-9Related Products of 932-22-9

Related Products of 932-22-9, While the job of a research scientist varies, most chemistry careers in research are based in laboratories, where research is conducted by teams following scientific methods and standards. 932-22-9, Name is 4,5-Dichloro-3(2H)-pyridazinone, molecular formula is C4H2Cl2N2O. In a Article,once mentioned of 932-22-9

Chemical modification of pyridazinone may lead to a potent therapeutic agent. In this study, biological properties of pyridazinone derivatives were evaluated by assessing their antimicrobial and in-vitro antioxidant activities. The reaction of a mucochloric acid and 3-chloro-phenylhydrazine hydrochloride led to the formation of 5-aryl-4-chloro-2-(3-chloro-phenyl)-2H-pyridazin-3-one derivatives 2(a-j). The target compounds were synthesized using nucleophilic substitution reaction. In-silico molecular docking studies of the synthesized compounds were carried out with the help of V-Life Science MDS 4.6 software using GRIP batch docking method to find out which derivative had a better docking. The newly synthesized compounds were characterized by FTIR,1HNMR,13C-NMR, MS, and elemental analysis. Antimicrobial and in-vitro antioxidant activity study of the novel synthesized compounds were screened. Compounds 2f and 2g showed good antimicrobial having an MIC 12.5 mug/mL against Staphylococcus aureus and Candida albicans and in-vitro antioxidant activities having an IC50 50.84. The experimental results were further supported by molecular docking analysis with better interaction patterns.

The potential utility of systematic synthetic strategy will be applicable to efficient generations of chemical libraries of compounds to find ‘hit’ molecules.Read on for other articles about 932-22-9Related Products of 932-22-9

Reference:
Pyridazine – Wikipedia,
Pyridazine | C4H4N2356 – PubChem