Downstream synthetic route of 29049-45-4

29049-45-4 6-Chloropyridazin-4-amine 14099144, apyridazine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.29049-45-4,6-Chloropyridazin-4-amine,as a common compound, the synthetic route is as follows.

Synthesis of 5-bromo-3-chloropyridazine. To a solution 6-chloropyridazin-4-amine (2 g, 15 mmol), t-BuONO (2.4 g, 23 mmol) in MeCN (40 mL) was added CuBr2 (5 g, 23 mmol) at 0 C. The resulting mixture was stirred at RT for 16 h and then concentrated in vacuo. The mixture was diluted with EtOAc (50 mL) and added H2O (50 mL). After filtered through celite, the filtrate was extracted with EtOAc (50 mL*3). The combined organic layers were washed with brine, dried over Na2SO4, and concentrated to give the crude product which was purified by silica gel chromatography (PE/EA=20/1) to give 5-bromo-3-chloropyridazine (1.32 g, yield: 43%) as a brown oil. ESI-MS [M+H]+: 192.8, 194.8., 29049-45-4

29049-45-4 6-Chloropyridazin-4-amine 14099144, apyridazine compound, is more and more widely used in various fields.

Reference:
Patent; Shire Human Genetic Therapies, Inc.; Papaioannou, Nikolaos; Fink, Sarah Jocelyn; Miller, Thomas Allen; Shipps, JR., Gerald Wayne; Travins, Jeremy Mark; Ehmann, David Edward; Rae, Alastair; Ellard, John Mark; (352 pag.)US2019/284182; (2019); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Downstream synthetic route of 1352925-63-3

As the paragraph descriping shows that 1352925-63-3 is playing an increasingly important role.

1352925-63-3, Ethyl 4,6-dihydroxypyridazine-3-carboxylate is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

[0177j A mixture 5-5 (3.38 g, 18.3 mmol) in POC13 (35 ml) was heated at 95 C for 5 hr.The excess POC13 was removed under vacuum, to the residue ice was added followed byethyl acetate. The organic phase was separated, washed with 5% NaHCO3, dried over Na2SO4, and concentrated to give compound 5-6 as an oil (3.27 g), 1352925-63-3

As the paragraph descriping shows that 1352925-63-3 is playing an increasingly important role.

Reference:
Patent; PORTOLA PHARMACEUTICALS, INC.; XU, Qing; SONG, Yonghong; PANDEY, Anjali; WO2015/123453; (2015); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 1834-27-1

1834-27-1 6-Chloro-4-methylpyridazin-3(2H)-one 164886, apyridazine compound, is more and more widely used in various fields.

1834-27-1, 6-Chloro-4-methylpyridazin-3(2H)-one is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Intermediate VIII6-Chloro-2,4-dimethyl-2H-pyridazin-3-one Methyl iodide (1.3 mL) was added to a mixture of 6-chloro-4-methyl-2H-pyridazin-3-one (2.70 g) and K2CO3 (3.40 g) in N,N-dimethylformamide (27 mL). The resulting mixture was stirred at ambient temperature overnight. Then, water was added and the mixture was extracted with ethyl acetate. The combined organic extracts were washed with water and brine and dried (MgSO4). After removal of the solvent, the title compound was obtained as a solid.Yield: 2.97 g (100% of theory); Mass spectrum (ESI+): m/z=159/161 (Cl) [M+H]+., 1834-27-1

1834-27-1 6-Chloro-4-methylpyridazin-3(2H)-one 164886, apyridazine compound, is more and more widely used in various fields.

Reference:
Patent; VITAE PHARMACEUTICALS, INC.; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; US2012/108578; (2012); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Brief introduction of 1352925-63-3

The synthetic route of 1352925-63-3 has been constantly updated, and we look forward to future research findings.

1352925-63-3, Ethyl 4,6-dihydroxypyridazine-3-carboxylate is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

1352925-63-3, To a glass lined reactor were charged toluene (0 26 kg), sulfolane (3.4 kg), Compound 1 (1.0 kg) and PQCh (2.7 kg). The crude was cooled to 0 C. Triethylamine (0.89 kg) was charged, and the resulting crude mixture was heated to 65 C and aged till the reaction reached completion. The reaction mass was cooled to 5 C. In a separate reactor, water (7.5 kg) was charged and cooled to 5 C The reaction mass was added slowly to the water solution, maintaining the internal temperature below 5 C. Additional water (0 5 kg) was used to rinse the reactor and aid the transfer. The resulting mixture was agitated at 5 C for 3 hours, then extracted with MTBE three times (3 x 4 5 kg). The combined organic layers were washed sequentially with aqueous pH 7 buffer solution (5.0 L/kg, 15 wt% KH2PO4/K2HPO4) and ‘ater (2.5 kg). The erode was distilled under vacuum until total volume became approximately 3 L/kg ACN (2 x 6 3 kg) was added followed by additional distillations back to -3 L/kg. The crude was cooled to 20 C to afford Compound 2 as a 30-36 wt% solution in 90-95% yield.

The synthetic route of 1352925-63-3 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; BRISTOL-MYERS SQUIBB COMPANY; ROBERTS, Daniel Richard; (0 pag.)WO2019/232138; (2019); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Simple exploration of 57041-95-9

The synthetic route of 57041-95-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.57041-95-9,6-Aminopyridazin-3(2H)-one,as a common compound, the synthetic route is as follows.

57041-95-9, A mixture of 6-aminopyridazin-3-ol (2 g, 18.00 mmol), NaOH (0.720 g, 18.00 mmol) and Mel (1.126 mL, 18.00 mmol) was stirred for 2.5 hr at 85 00 under Ar. The reaction mixture was concentrated. The crude material was purified by silica gel column chromatography (NH3 1% ICH2CI2/MeOH 4-7%) to afford the title product (538 mg, 4.30 mmol, 24 % yield) as a yellowsolid. tR: 0.25 mm (LC-MS 2); ESI-MS: 126 [M+H] (LC-MS 2); R = 0.36 (CH2CI2/MeOH 9:1).

The synthetic route of 57041-95-9 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; NOVARTIS AG; BLANK, Jutta; BORDAS, Vincent; COTESTA, Simona; GUAGNANO, Vito; RUEEGER, Heinrich; VAUPEL, Andrea; WO2014/191896; (2014); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Downstream synthetic route of 1352925-63-3

As the paragraph descriping shows that 1352925-63-3 is playing an increasingly important role.

1352925-63-3, Ethyl 4,6-dihydroxypyridazine-3-carboxylate is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a 5000 ml rb flask, ethyl 4,6-dihydroxypyridazine-3-carboxylate (200 g, 1086 mmol) was dissolved in THF (2000 mL), methanol (1000 mL) and water (800 mL). LiOH (137 g, 3258 mmol) was added slowly at rt and stirred at rt for 3-4 hr. The starting material was gone. The solvent was removed at 50 C. under reduced pressure to afford a yellow solid. The solid was acidified with aqueous HCl solution (400 ml) (1:1 ratio) at 0 C. and stirred at rt for 30-40 minutes. The solid was filtered and washed with water. It was then dried under vacuum for 1-2 hr. This solid was taken into 300 ml of methanol:DCM (2:8) and stirred at rt for 20-25 minutes. The mixture was filtered and the solid was washed with methanol and dried under vacuum for 1 hr. The desired product was obtained as a yellow solid, 4,6-dihydroxypyridazine-3-carboxylic acid (153 g, 951 mmol, 88% yield). MS (M+1) m/z: 156.9 (MH+). LC retention time 0.31 min [A]. 1H NMR (400 MHz, deuterium oxide) delta 6.00-5.34 (m, 1H), 4.75 (s, 7H), 1352925-63-3

As the paragraph descriping shows that 1352925-63-3 is playing an increasingly important role.

Reference:
Patent; BRISTOL-MYERS SQUIBB COMPANY; Liu, Chunjian; Yang, Michael G.; Xiao, Zili; Chen, Ling; Moslin, Ryan M.; Tokarski, John S.; Weinstein, David S.; (84 pag.)US2019/152948; (2019); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Brief introduction of 1834-27-1

As the paragraph descriping shows that 1834-27-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1834-27-1,6-Chloro-4-methylpyridazin-3(2H)-one,as a common compound, the synthetic route is as follows.

A solution of 6-chloro-4-methylpyridazin-3-ol (Intermediate X17; 0.50 g, 3.4 mmol) in DCM (20 mL) was treated with (5-(methoxycarbonyl)-2-methylphenyl)boronic acid (1.0 g, 5.2 mmol), Cu(OAc)2 (1.2 g, 6.9 mmol), pyridine 1-oxide (327 mg, 3.44 mmol) and pyridine (1.1 g, 14 mmol). The resulting mixture was stirred at ambient temperature open to the atmosphere for one overnight. The reaction mixture was diluted with DCM (100 mL) and washed with water (2 x 30 mL). The organic extracts were dried over anhydrous Na2SO4(), filtered and concentrated under vacuum. The crude residue was purified by silica gel flash chromatography (2-55% EtOAc/hexane as the gradient eluent) to afford the title compound (2.99 g, 99% yield). MS (apci) m/z = 293.0 (M+H), 295.0 [(M+H)+2] (with Cl pattern)., 1834-27-1

As the paragraph descriping shows that 1834-27-1 is playing an increasingly important role.

Reference:
Patent; ARRAY BIOPHARMA, INC.; ANDREWS, Steven W.; BLAKE, James F.; COOK, Adam; GUNAWARDANA, Indrani W.; HUNT, Kevin W.; METCALF, Andrew T.; MORENO, David; REN, Li; TANG, Tony P.; (263 pag.)WO2017/70708; (2017); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 29049-45-4

29049-45-4 6-Chloropyridazin-4-amine 14099144, apyridazine compound, is more and more widely used in various fields.

29049-45-4, 6-Chloropyridazin-4-amine is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

[0512] Compound 487A was prepared by an analogous method as that of 473B, except using compound 3-chloro-5-aminopyridazine in place of compound 2-bromo-6-aminopyridine., 29049-45-4

29049-45-4 6-Chloropyridazin-4-amine 14099144, apyridazine compound, is more and more widely used in various fields.

Reference:
Patent; Das, Jagabandhu; Padmanabha, Ramesh; Chen, Ping; Norris, Derek J.; Doweyko, Arthur M.P.; Barrish, Joel C.; Wityak, John; Lombardo, Louis J.; Lee, Francis Y.F.; US2004/54186; (2004); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Some tips on 35857-93-3

35857-93-3, The synthetic route of 35857-93-3 has been constantly updated, and we look forward to future research findings.

35857-93-3, 3,6-Dichloropyridazine-4-carbonitrile is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a stirred solution of 3,6-dichloropyridazine-4-carbonitrile (2.00 g, 11.50 mmol, 1.00 equiv) in methanol (20 mL) was added hydrazine hydrate (1.15 g, 22.97 mmol, 2.00 equiv) dropwise at room temperature. The resulting solution was heated at 60 C for 1 hour. After completion the mixture was concentrated under vacuum and the residue was diluted with ethyl acetate. Theprecipitates were collected by filtration to give the title compound (1.8 g, 92%) as a light yellow solid. LC-MS (ES, m/z): 170 [M+H].

35857-93-3, The synthetic route of 35857-93-3 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; F. HOFFMANN-LA ROCHE AG; GENENTECH, INC.; BLAQUIERE, Nicole; BURCH, Jason; CASTANEDO, Georgette; FENG, Jianwen A.; HU, Baihua; STABEN, Steven; WU, Guosheng; YUEN, Po-wai; WO2015/25025; (2015); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Analyzing the synthesis route of 29049-45-4

29049-45-4, As the paragraph descriping shows that 29049-45-4 is playing an increasingly important role.

29049-45-4, 6-Chloropyridazin-4-amine is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a stirred suspension of potassium tert-butoxide (3.90 g, 34.7 mmol) in 1,4-Dioxane (50 mL) was added a mixture of (,S)-(2,2-dimethyl-l,3-dioxolan-4-yl)methanol (2.75 g, 20.84 mmol) at 0 C and the reaction mixture was stirred at 25 C for 1 h. under Nitrogen atmosphere, then 6-chloropyridazin-4-amine (1.5 g, 1 1.58 mmol) was added to the reaction mixture and the resulted reaction mixture was stirred at 1 10 C for 16 h. (TLC System: Neat Ethyl acetate, Rf: 0.3). The reaction mixture was poured in to ice cold water (40 ml) and extracted with EtOAc (2×80 mL). The combined organic layer was washed with brine solution (50 mL), dried over anhydrous Na2S04, filtered and concentrated under reduced pressure to get crude compound. The crude material was purified by flash column chromatography (Neutral alumina, Eluent: 65% Ethyl acetate in Pet ether) to afford the desired product (,S)-6-((2,2-dimethyl-l,3-dioxolan-4-yl)methoxy)pyridazin-4-amine (1.0 g, 4.28 mmol, 37.0 % yield) as a white solid. LCMS (m/z): 226.20 [M+H]+.

29049-45-4, As the paragraph descriping shows that 29049-45-4 is playing an increasingly important role.

Reference:
Patent; GLAXOSMITHKLINE INTELLECTUAL PROPERTY (NO.2) LIMITED; ELLIS, James Lamond; EVANS, Karen Anderson; FOX, Ryan Michael; MILLER, William Henry; SEEFELD, Mark Andrew; (766 pag.)WO2016/79709; (2016); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem