New learning discoveries about 1834-27-1

1834-27-1, As the paragraph descriping shows that 1834-27-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1834-27-1,6-Chloro-4-methylpyridazin-3(2H)-one,as a common compound, the synthetic route is as follows.

Intermediate VIII6-Chloro-2,4-dimethyl-2H-pyridazin-3-one Methyl iodide (1.3 mL) was added to a mixture of 6-chloro-4-methyl-2H-pyridazin-3-one (2.70 g) and K2CO3 (3.40 g) in N,N-dimethylformamide (27 mL). The resulting mixture was stirred at ambient temperature overnight. Then, water was added and the mixture was extracted with ethyl acetate. The combined organic extracts were washed with water and brine and dried (MgSO4). After removal of the solvent, the title compound was obtained as a solid.Yield: 2.97 g (100% of theory); Mass spectrum (ESI+): m/z=159/161 (Cl) [M+H]+.

1834-27-1, As the paragraph descriping shows that 1834-27-1 is playing an increasingly important role.

Reference:
Patent; VITAE PHARMACEUTICALS, INC.; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; US2012/108578; (2012); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Analyzing the synthesis route of 57041-95-9

As the paragraph descriping shows that 57041-95-9 is playing an increasingly important role.

57041-95-9, 6-Aminopyridazin-3(2H)-one is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

57041-95-9, Step 32.1: 6-amino-2-methylpyridazin-3(2H)-one A mixture of 6-aminopyridazin-3-ol (2 g, 18.00 mmol), NaOH (0.720 g, 18.00 mmol) and MeI (1.126 mL, 18.00 mmol) was stirred for 2.5 hr at 85 C. under Ar. The reaction mixture was concentrated. The crude material was purified by silica gel column chromatography (NH3 1%/CH2Cl2/MeOH 4-7%) to afford the title product (538 mg, 4.30 mmol, 24% yield) as a yellow solid. tR: 0.25 min (LC-MS 2); ESI-MS: 126 [M+H]+ (LC-MS 2); Rf=0.36 (CH2Cl2/MeOH 9:1).

As the paragraph descriping shows that 57041-95-9 is playing an increasingly important role.

Reference:
Patent; NOVARTIS AG; BLANK, Jutta; BORDAS, Vincent; COTESTA, Simona; GUAGNANO, Vito; RUEEGER, Heinrich; VAUPEL, Andrea; US2014/349990; (2014); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 1632-74-2

1632-74-2, As the paragraph descriping shows that 1632-74-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1632-74-2,3,6-Dimethylpyridazine,as a common compound, the synthetic route is as follows.

Step B: A mixture of 3,6-dimethylpyridazine (81 mg, 0.75 mmol) and 3-(2-bromoacetyl)-7-fluoro-2H-chromen-2-one (143 mg, 0.5 mmol, prepared in Example 36, Part 2) in anhydrous CH3CN (1 mL) was stirred at room temperature for 5 d in a sealed tube to afford 1-(2-(7-fluoro-2-oxo-2H-chromen-3-yl)-2-oxoethyl)-3,6-dimethylpyridazin-1-ium bromide as a crude mixture in CH3CN.

1632-74-2, As the paragraph descriping shows that 1632-74-2 is playing an increasingly important role.

Reference:
Patent; PTC Therapeutics, Inc.; F. Hoffmann-La Roche AG; Woll, Matthew G.; Chen, Guangming; Choi, Soongyu; Dakka, Amal; Huang, Song; Karp, Gary Mitchell; Lee, Chang-Sun; Li, Chunshi; Narasimhan, Jana; Naryshkin, Nikolai; Paushkin, Sergey; Qi, Hongyan; Turpoff, Anthony A.; Weetall, Marla L.; Welch, Ellen; Yang, Tianle; Zhang, Nanjing; Zhang, Xiaoyan; Zhao, Xin; Pinard, Emmanuel; Ratni, Hasane; (317 pag.)US9617268; (2017); B2;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 33097-39-1

33097-39-1, As the paragraph descriping shows that 33097-39-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.33097-39-1,3,6-Difluoropyridazine,as a common compound, the synthetic route is as follows.

(1) A mixture of 3,6-difluoropyridazine (7.8 g) and 25 ml of concentrated ammonium hydroxide solution is heated in a sealed tube for 2 hours at 70 C. After cooling, the crystals separated are filtered and washed with water to give 4 g of 3-amino-6-fluoropyridazine. NMR spectrum (d6 -DMSO)delta: 6.23 (2H, br. s), 7-7.2 (2H, m).

33097-39-1, As the paragraph descriping shows that 33097-39-1 is playing an increasingly important role.

Reference:
Patent; Takeda Chemical Industries, Ltd.; US4864022; (1989); A;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Brief introduction of 108784-42-5

108784-42-5, The synthetic route of 108784-42-5 has been constantly updated, and we look forward to future research findings.

108784-42-5, 6-Fluoropyridazin-3-amine is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

6-Fiuoro-pyridazin-3-ylamine [108784-42-5] (10 g, 89 mmol) was combined with a 50% (wjv)aqueous solution of chloroacetaldehyde [107-20-0] (23 ml, 177 mmol) inn-butanol (150 ml) and stirred at reflux for 1h. The cooled reaction solution was reduced in volume and diluted with diethylether to precipitate a brown solid, which was collected by filtration, to yield 12.0 g. LRMS (ESI) mjz138.0 [(M+H)J+, calc’d for CGH4FN3: 137.12.

108784-42-5, The synthetic route of 108784-42-5 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; LEXICON PHARMACEUTICALS, INC.; BI, Yingzhi; CARSON, Kenneth Gordon; CIANCHETTA, Giovanni; GREEN, Michael Alan; KUMI, Godwin; LIANG, Zhi; LIU, Ying Jade; MAIN, Alan; ZHANG, Yulian; ZIPP, Glenn Gregory; WO2013/134219; (2013); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Downstream synthetic route of 29049-45-4

29049-45-4 6-Chloropyridazin-4-amine 14099144, apyridazine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.29049-45-4,6-Chloropyridazin-4-amine,as a common compound, the synthetic route is as follows.

Synthesis of 5-bromo-3-chloropyridazine. To a solution 6-chloropyridazin-4-amine (2 g, 15 mmol), t-BuONO (2.4 g, 23 mmol) in MeCN (40 mL) was added CuBr2 (5 g, 23 mmol) at 0 C. The resulting mixture was stirred at RT for 16 h and then concentrated in vacuo. The mixture was diluted with EtOAc (50 mL) and added H2O (50 mL). After filtered through celite, the filtrate was extracted with EtOAc (50 mL*3). The combined organic layers were washed with brine, dried over Na2SO4, and concentrated to give the crude product which was purified by silica gel chromatography (PE/EA=20/1) to give 5-bromo-3-chloropyridazine (1.32 g, yield: 43%) as a brown oil. ESI-MS [M+H]+: 192.8, 194.8., 29049-45-4

29049-45-4 6-Chloropyridazin-4-amine 14099144, apyridazine compound, is more and more widely used in various fields.

Reference:
Patent; Shire Human Genetic Therapies, Inc.; Papaioannou, Nikolaos; Fink, Sarah Jocelyn; Miller, Thomas Allen; Shipps, JR., Gerald Wayne; Travins, Jeremy Mark; Ehmann, David Edward; Rae, Alastair; Ellard, John Mark; (352 pag.)US2019/284182; (2019); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Some tips on 1352925-63-3

1352925-63-3 Ethyl 4,6-dihydroxypyridazine-3-carboxylate 69007765, apyridazine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1352925-63-3,Ethyl 4,6-dihydroxypyridazine-3-carboxylate,as a common compound, the synthetic route is as follows.

Step 3[00162j To a 350 mL nitrogen purged Schlenk flask containing Int2 (3.77 g, 20.47 mmol) was added phosphorus oxychloride (38 mL, 408 mmol). The vessel was sealed and heated to 100 C for 3.5 hours. The reaction was cooled to room temperature and the excess phosphorus oxychloride was removed in vacuo. The crude oil was dissolved into chloroform, re-concentrated and then poured into ice water, rinsing with ethyl acetate.The two layers were transferred to a separatory funnel, separated and the aqueous layer extracted 3x with ethyl acetate. The combined organic layers were washed twice with water and once with brine (saturated aqueous sodium chloride) and then dried over sodium sulfate, filtered, concentrated and then purified by automated chromatography (5- 90% EtOAc:hexanes), providing Int3 (3.64 g, 16.3 mmol). ?H NMR (400MHz, chloroform-d) oe 7.70 (s, 1H), 4.55 (qd, J=7.1, 1.1 Hz, 2H), 1.46 (td, J=7.2, 0.9 Hz, 3H). LC retention time 0.79 [J]. MS(E) m/z: 221 (MHj., 1352925-63-3

1352925-63-3 Ethyl 4,6-dihydroxypyridazine-3-carboxylate 69007765, apyridazine compound, is more and more widely used in various fields.

Reference:
Patent; BRISTOL-MYERS SQUIBB COMPANY; MOSLIN, Ryan M.; WEINSTEIN, David S.; WROBLESKI, Stephen T.; TOKARSKI, John S.; KUMAR, Amit; WO2014/74661; (2014); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Some tips on 108784-42-5

108784-42-5 6-Fluoropyridazin-3-amine 13719068, apyridazine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.108784-42-5,6-Fluoropyridazin-3-amine,as a common compound, the synthetic route is as follows.

6-Fluoropyridazin-3-ylamine (10 g, 89 mmol) was combined with a 50% (w/v) aqueous solution of chloroacetaldehyde (23 mL, 177 mmol) in n-butanol (150 mL) and stirred at reflux for 1h. The cooled reaction solution was reduced in volume and diluted with diethyl ether to precipitate a brown solid, which was collected by filtration, to yield 12.0 g of the titled compound. LRMS (ESI) m/z 138.0[(M+H)]+,calc?d for C6H4FN3: 137.12., 108784-42-5

108784-42-5 6-Fluoropyridazin-3-amine 13719068, apyridazine compound, is more and more widely used in various fields.

Reference:
Article; Kostich, Walter; Hamman, Brian D.; Li, Yu-Wen; Naidu, Sreenivasulu; Dandapani, Kumaran; Feng, Jianlin; Easton, Amy; Bourin, Clotilde; Baker, Kevin; Allen, Jason; Savelieva, Katerina; Louis, Justin V.; Dokania, Manoj; Elavazhagan, Saravanan; Vattikundala, Pradeep; Sharma, Vivek; Das, Manish Lal; Shankar, Ganesh; Kumar, Anoop; Holenarsipur, Vinay K.; Gulianello, Michael; Molski, Ted; Brown, Jeffrey M.; Lewis, Martin; Huang, Yanling; Lu, Yifeng; Pieschl, Rick; O’malley, Kevin; Lippy, Jonathan; Nouraldeen, Amr; Lanthorn, Thomas H.; Ye, Guilan; Wilson, Alan; Balakrishnan, Anand; Denton, Rex; Grace, James E.; Lentz, Kimberley A.; Santone, Kenneth S.; Bi, Yingzhi; Main, Alan; Swaffield, Jon; Carson, Ken; Mandlekar, Sandhya; Vikramadithyan, Reeba K.; Nara, Susheel J.; Dzierba, Carolyn; Bronson, Joanne; Macor, John E.; Zaczek, Robert; Westphal, Ryan; Kiss, Laszlo; Bristow, Linda; Conway, Charles M.; Zambrowicz, Brian; Albright, Charles F.; Journal of Pharmacology and Experimental Therapeutics; vol. 358; 3; (2016); p. 371 – 386;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 1352925-63-3

1352925-63-3, As the paragraph descriping shows that 1352925-63-3 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1352925-63-3,Ethyl 4,6-dihydroxypyridazine-3-carboxylate,as a common compound, the synthetic route is as follows.

In a 5000 ml rb flask, ethyl 4,6-dihydroxypyridazine-3-carboxylate (200 g, 1086 mmol) was dissolved in THF (2000 mL), methanol (1000 mL) and water (800 mL). LiOH (137 g, 3258 mmol) was added slowly at rt and stirred at rt for 3-4 hr. The starting material was gone. The solvent was removed at 50 C. under reduced pressure to afford a yellow solid. The solid was acidified with aqueous HCl solution (400 ml) (1:1 ratio) at 0 C. and stirred at rt for 30-40 minutes. The solid was filtered and washed with water. It was then dried under vacuum for 1-2 hr. This solid was taken into 300 ml of methanol:DCM (2:8) and stirred at rt for 20-25 minutes. The mixture was filtered and the solid was washed with methanol and dried under vacuum for 1 hr. The desired product was obtained as a yellow solid, 4,6-dihydroxypyridazine-3-carboxylic acid (153 g, 951 mmol, 88% yield). MS (M+1) m/z: 156.9 (MH+). LC retention time 0.31 min [A]. 1H NMR (400 MHz, deuterium oxide) delta 6.00-5.34 (m, 1H), 4.75 (s, 7H)

1352925-63-3, As the paragraph descriping shows that 1352925-63-3 is playing an increasingly important role.

Reference:
Patent; BRISTOL-MYERS SQUIBB COMPANY; Liu, Chunjian; Yang, Michael G.; Xiao, Zili; Chen, Ling; Moslin, Ryan M.; Tokarski, John S.; Weinstein, David S.; (84 pag.)US2019/152948; (2019); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 5754-18-7

5754-18-7 1,2-Dihydro-4-methyl-3,6-pyridazinedione 79826, apyridazine compound, is more and more widely used in various fields.

5754-18-7, 1,2-Dihydro-4-methyl-3,6-pyridazinedione is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5754-18-7, 4-Methyl-1,2-dihydropyridazine-3,6-dione (9.48 g, 75.2 mmol) was suspended in phosphorus oxychloride (70 mL, 750 mmol) at ambient temperature under an atmosphere of N2 and then heated at gentle reflux for 4 h to give a golden yellow homogenous solution. The mixture was allowed to cool and excess phosphorous oxychloride was removed by vacuum distillation (14 mbar, 50-70 C). The residual viscous brown oil was slowly added to ice-cooled sat. NaHCO3 solution (200 mL) with vigorous stirring. The resulting heterogenous mixture was adjusted to pH 6 by the slow addition of solid NaHCO3 and then extracted with EtOAc (2 x 60 mL). The combined organic phase was washed with sat. NaCl solution (30 mL), dried (MgSO4) and evaporated to give the title compound (11.5 g, 70.8 mmol; 94%) as a yellow powder; mp 87-88C (from light petrol/diethyl ether); IR (KBr): 3054, 1567, 1434, 1351, 1326, 1145, 1121, 914, 720 cm-1. 1H NMR (200 MHz, CDCl3): delta 2.42 (3H, d, J = 1.0 Hz), 7.41 (1 H, q, J = 0.9 Hz); 13C NMR (50 MHz, CDCl3): 19.2 (CH3), 130.1 (CH-5), 140.7 (C-4), 155.6 (C-6), 157.3 (C-3); LRMS (EI) 162 ([M+]). Anal. calcd for C5H4Cl2N2: C, 36.84; H, 2.47; N, 17.19. Found: C, 36.93; H, 2.57; N, 17.48.

5754-18-7 1,2-Dihydro-4-methyl-3,6-pyridazinedione 79826, apyridazine compound, is more and more widely used in various fields.

Reference:
Article; Ochiai, Koji; Takita, Satoshi; Eiraku, Tomohiko; Kojima, Akihiko; Iwase, Kazuhiko; Kishi, Tetsuya; Fukuchi, Kazunori; Yasue, Tokutaro; Adams, David R.; Allcock, Robert W.; Jiang, Zhong; Kohno, Yasushi; Bioorganic and Medicinal Chemistry; vol. 20; 5; (2012); p. 1644 – 1658;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem