Downstream synthetic route of 17973-86-3

17973-86-3, 17973-86-3 3,6-Dibromopyridazine 248852, apyridazine compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.17973-86-3,3,6-Dibromopyridazine,as a common compound, the synthetic route is as follows.

To a mixture of (4-(3-(cyclopropylmethoxy)phenoxy)-2,6-difluorophenyl)methanol (500 mg) and THF (10 ml) was added sodium hydride (60% in oil, 65 mg), and the mixture was stirred at 15C for 30 min. To the mixture was added 3,6-dibromopyridazine (388 mg), and the mixture was stirred at 18C for 4 hr. The reaction mixture was poured into water, and extracted with ethyl acetate. The obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether) to give the title compound (570 mg). 1H NMR (400 MHz, DMSO-d6) delta 0.25-0.35 (2H, m), 0.50-0.60 (2H, m), 1.15-1.25 (1H, m), 3.81 (2H, d, J = 7.2 Hz), 5.47 (2H, s), 6.65-6.73 (2H, m), 6.75-6.85 (3H, m), 7.28 (1H, d, J = 9.2 Hz), 7.34 (1H, t, J = 8.0 Hz), 7.91 (1H, d, J = 9.2 Hz).

17973-86-3, 17973-86-3 3,6-Dibromopyridazine 248852, apyridazine compound, is more and more widely used in various.

Reference£º
Patent; Takeda Pharmaceutical Company Limited; MIZOJIRI, Ryo; ASANO, Moriteru; TOMITA, Daisuke; BANNO, Hiroshi; TAWADA, Michiko; NII, Noriyuki; GIPSON, Krista E.; MAEZAKI, Hironobu; TSUCHIYA, Shuntaro; IMAI, Mayumi; AMANO, Yuichiro; (100 pag.)EP3279183; (2018); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Simple exploration of 17973-86-3

The synthetic route of 17973-86-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.17973-86-3,3,6-Dibromopyridazine,as a common compound, the synthetic route is as follows.

EXAMPLE 27 A mixture of 4.1 parts of 3,6-dibromopyridazine, 4.34 parts of 1-[3-[4-(4,5-dihydro-2-oxazolyl)phenoxy]propyl]piperazine, 6.4 parts of sodium carbonate and 188 parts of N,N-dimethylformamide was stirred overnight at 65 C. The reaction mixture was poured into ice water and the product was extracted with dichloromethane. The extract was dried, filtered and evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromethane and methanol (98.5:1.5 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was crystallized from 2-propanol. The product was filtered off and dried, yielding 1.1 parts (16.4%) of 3-bromo-6-[4-[3-[4-(4,5-dihydro-2-oxazolyl)phenoxy]propyl]-1-piperazinyl]pyridazine; mp. 169.1 C. (comp. 75).

The synthetic route of 17973-86-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Janssen Pharmaceutica N.V.; US4992433; (1991); A;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem