Brief introduction of 135034-10-5

The synthetic route of 135034-10-5 has been constantly updated, and we look forward to future research findings.

135034-10-5, 3-Chloro-6-iodopyridazine is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,135034-10-5

To a suspension of intermediate 4 (3.2g, 13.2mmol) in 1,4-dioxane (40ml) was added 2,3- dichlorophenyl boronic acid (2.5g, 13.2mmol), tris(dibenzyrideneacetone)-di-palladium(0)- chloroform adduct (725mg, 0.79mmol), potassium fluoride (2.5g, 43.5mmol) and tri-tert- butylphosphine-tetra-fluoroborate (458mg, 1.58mmol), the mixture was then heated to 1000C for 1 hour whilst under argon. The dark crude reaction mixture was then evaporated to dryness. The solid was suspended in ethyl acetate (50ml) and poured through cellite and again evaporated to dryness. The sample was then purified by chromatography (9Og of silica) eluting with 10% ethyl acetate/ petroleum ether 40:60. The title compound was obtained as a white solid (2.2g). 1H-NMR (CDCl3) delta 7.38 (IH, t, J= 8), 7.59-7.63 (3H, m), 7.83 (IH, d, J= 9) LC/MS m/z [MH+] 259 consistent with molecular formula Ci0H535Cl3N2

The synthetic route of 135034-10-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; GLAXO GROUP LIMITED; WO2008/116816; (2008); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Analyzing the synthesis route of 135034-10-5

The synthetic route of 135034-10-5 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.135034-10-5,3-Chloro-6-iodopyridazine,as a common compound, the synthetic route is as follows.

Example 11 3-(4-[1,2,3]Triazol-1-yl-butyl)-6-{2-[2-(4-trifluoromethoxy-phenyl)-vinyl]-oxazol-4-ylmethoxy}-pyridazine 3-Chloro-6-iodo-pyridazine (11.56 g, 48.1 mmol), 1-but-3-ynyl-1H-[1,2,3]triazole (6.99 g, 57.7 mmol) and triethyl amine (NEt3) (94 ml) are dissolved in DMF (188 ml) and copper iodide (CuI) (0.981 g, 5.15 mmol) is added under stirring. After passing a stream of argon through the mixture for 10 min tetrakis(triphenylphosphine)palladium(0) (2.836 g, 2.43 mmol) is added and stirring is continued for 6 h at r.t. Dichloromethane (300 ml) is added, the mixture is washed with 0.5N hydrochloric acid (HCl) and brine, dried over Na2SO4 and concentrated in vacuo. The crude product is purified by flash column chromatography (ethyl acetate) yielding 3-chloro-6-(4-[1,2,3]triazol-1-yl-but-1-ynyl)-pyridazine as a colorless solid. Yield 9.52 g (85%). 1H-NMR (400 MHz, CDCl3): delta=3.12 (t, 2H, CH2-C=), 4.67 (t, 2H, CH2-N), 7.39 (d, 1H, pyridazine), 7.45 (d, 1H, pyridazine), 7.70 (s, 1H, triazole), 7.73 (s, 1H, triazole).

The synthetic route of 135034-10-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Bossenmaier, Birgit; Friebe, Walter-Gunar; Jenni, Wolfgang; Rueth, Matthias; Voss, Edgar; US2005/222228; (2005); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem