Analyzing the synthesis route of 1352925-63-3

The synthetic route of 1352925-63-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1352925-63-3,Ethyl 4,6-dihydroxypyridazine-3-carboxylate,as a common compound, the synthetic route is as follows.

Step 3.Preparation of 4,6-dichloro-pyridazine-3-carboxylic acid methyl or ethyl ester 5 A mixture of 4,6-dihydroxy-pyridazine-3-carboxylic acid methyl or ethyl ester (50 mmol) and POCl3 (90 ML) is heated at 95 C. for 4 hours.The excess POCl3 is evaporated in vacuo and to the residue cooled to 0 C. was added ice (150 g) followed by EtOAc (200 ML).The layers are separated and the aqueous layer is extracted with EtOAc (2*100 ML).The combined extracts are washed with brine (200 ML), dried (Na2SO4) and evaporated in vacuo.This residue is purified by flash column chromatography (225 g silica gel, eluted with 4:1 hexane, EtOAc).The desired 4,6 dichloro-pyridazine-3-carboxylic acid methyl ester is obtained as a white solid, while the 4,6 dichloro-pyridazine-3-carboxylic acid ethyl ester is a colorless liquid., 1352925-63-3

The synthetic route of 1352925-63-3 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Xie, Linghong; Han, Bingsong; Xu, Yuelian; Maynard, George D.; US2004/77653; (2004); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Simple exploration of 446273-59-2

446273-59-2, As the paragraph descriping shows that 446273-59-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.446273-59-2,3-Amino-4-bromo-6-chloropyridazine,as a common compound, the synthetic route is as follows.

4-Bromo-6-chloro-pyridazin-3-amine (5.2 g, 25 mmol) was combined with tetrakis(triphenylphosphine)palladium(0) (700 mg, 0.61 mmol) and DMF (50 mL). To the mixture was added dimethylzinc in heptane (50 mL, 50 mmol, 1.0 M) at room temperature. The mixture was heated at 50 C for 2 h then 70 C for 1 h. The mixture was cooled to 0 C and excess reagent was quenched by the addition of H20. The mixture was filtered over Celite and concentrated. The residue was chromatographed on silica gel, eluting with 0-10% MeOH in CH2C12. MS m/z 144.2, 146.2 [M+H]+.

446273-59-2, As the paragraph descriping shows that 446273-59-2 is playing an increasingly important role.

Reference:
Patent; PTC THERAPEUTICS, INC.; WOLL, Matthew, G.; AMEDZO, Lukiana; BABU, Suresh; BARRAZA, Scott, J.; BHATTACHARYYA, Anuradha; KARP, Gary, Mitchell; MAZZOTTI, Anthony, R.; NARASIMHAN, Jana; PATEL, Jigar; TURPOFF, Anthony; XU, Zhenrong; (251 pag.)WO2018/226622; (2018); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Downstream synthetic route of 39614-78-3

39614-78-3 6-Ethoxypyridazin-3-amine 3084748, apyridazine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.39614-78-3,6-Ethoxypyridazin-3-amine,as a common compound, the synthetic route is as follows.

General procedure: A stirred mixture of 3-amino-6-propoxypyridazine 3 (4.50g, 29.4mmol), 2-bromo-1-[4-(2-methoxyethoxy)phenyl]ethanone 11 (8.03g, 29.4mmol) and EtOH (280mL) was heated at reflux for 2.5 hours. The mixture was cooled and NaHCO3 (2.50g, 30mmol) was added. The mixture was stirred at room temperature for 15 hours, heated at reflux for 1 hour, then cooled and evaporated. The residue was extracted with CHCl3 (150mL) and the extract washed with saturated, aqueous NaCl solution (50mL), dried (MgSO4) and evaporated. The residue was purified by flash chromatography over silica gel. Elution with 1-2% MeOH in CH2Cl2 afforded a green/brown solid. Treatment with decolourising charcoal and recrystallization from cyclohexane gave 6f (3.95g, 41%) as pale green crystals, m.p. 82.5-84C. 1H NMR (CDCl3) ? 1.06 (3H, t, J=7.2Hz), 1.75-1.94 (2H, m), 3.47 (3H, s), 3.74-3.81 (2H, m), 4.14-4.21 (2H, m), 4.27 (2H, t, J=6.6Hz), 6.68 (1H, d, J=9.3Hz), 7.00 (2H, d, J=8.8Hz), 7.76-7.88 (3H, m), 7.94 (1H, s). MS (APCI+) m/z 328 (M+H, 100%)., 39614-78-3

39614-78-3 6-Ethoxypyridazin-3-amine 3084748, apyridazine compound, is more and more widely used in various fields.

Reference:
Article; Ali, Abdelselam; Cablewski, Teresa; Francis, Craig L.; Ganguly, Ashit K.; Sargent, Roger M.; Sawutz, David G.; Winzenberg, Kevin N.; Bioorganic and Medicinal Chemistry Letters; vol. 21; 14; (2011); p. 4160 – 4163;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Some tips on 1352925-63-3

1352925-63-3 Ethyl 4,6-dihydroxypyridazine-3-carboxylate 69007765, apyridazine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1352925-63-3,Ethyl 4,6-dihydroxypyridazine-3-carboxylate,as a common compound, the synthetic route is as follows.

1352925-63-3, To a solution of ethyl 4,6-dihydroxypyridazine-3-carboxylate (2.1 g, 11.40 mmol) in 40 ml NH3-CH3OH was held at room temperature with stirring on for 20h under N2. The solvents were removed in vacuo, and the residue was used to next step directly. m/z calcd for[C5H5N303]+ [M+H]+: 156.0; found: 156.0.

1352925-63-3 Ethyl 4,6-dihydroxypyridazine-3-carboxylate 69007765, apyridazine compound, is more and more widely used in various fields.

Reference:
Patent; GALECTO BIOTECH AB; BRIMERT, Thomas; JOHNSSON, Richard; LEFFLER, Hakon; NILSSON, Ulf; ZETTERBERG, Fredrik; (284 pag.)WO2016/120403; (2016); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Brief introduction of 446273-59-2

446273-59-2 3-Amino-4-bromo-6-chloropyridazine 22024419, apyridazine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.446273-59-2,3-Amino-4-bromo-6-chloropyridazine,as a common compound, the synthetic route is as follows.

4-bromo-6-chloro-pyridazin-3-amine (3.0 g, 14.4 mmol) and (0298) tetrakis(triphenylphosphine)palladium (1666 mg, 144 muiotaetaomicron) were suspended in THF (13.2 g) and a solution of zinc chloride in Me-THF (2.0 M, 9 mL, 18 mmol) was added. The reaction mixture was cooled to -5C and methyllithium in diethoxymethane (3.1 M, 11.6 mL, 36 mmol) was added. The reaction mixture was stirred at 45C for 4 hours. Sodium sulfate decahydrate (11.7 g, 36 mmol) was added at room temperature, the mixture was stirred 1.5 hours at 60C, diluted with water (100 mL) and after 30 minutes the precipitate was filtered off. The precipitate was dissolved in aqueous HC1 2M (100 mL) and ethyl acetate (140 mL). The biphasic system was filtered, the phases were separated and the pH of the water layer adjusted to 7 with aqueous NaOH 32% (18 mL). The precipitate was filtered and dried. The solid obtained was digested twice in methanol (20 mL) at room temperature. The two filtrates were combined, evaporated and dried under high vacuum to afford 6-chloro-4-methyl-pyridazin-3-amine (1.2 g, 58.1%) as a red solid. (0299) -NuMuRhonu (CDCb, 600 MHz): 7.09 (d, 1H); 4.90 (br s, 2H), 2.17 (d, 3H), 446273-59-2

446273-59-2 3-Amino-4-bromo-6-chloropyridazine 22024419, apyridazine compound, is more and more widely used in various fields.

Reference:
Patent; F. HOFFMANN-LA ROCHE AG; HOFFMANN-LA ROCHE INC.; ADAM, Jean-Michel; FANTASIA, Serena Maria; FISHLOCK, Daniel Vincent; HOFFMANN-EMERY, Fabienne; MOINE, Gerard; PFLEGER, Christophe; MOESSNER, Christian; (73 pag.)WO2019/57740; (2019); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Analyzing the synthesis route of 147362-88-7

The synthetic route of 147362-88-7 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.147362-88-7,N-(6-Chloropyridazin-3-yl)pivalamide,as a common compound, the synthetic route is as follows.

A flask was charged with N-(6-chloro-pyridazin-3-yl)-2,2-dimethyl-propionamide (Turck. Alain; PIe, Nelly; Ndzi, Bruno; Queguiner, Guy; Haider, Norbert Schuller, Herbert; Heinisch, Gottfried. Tetrahedron. 1993, 49, 599-606.) (500 mg, 2.34 mmol), Pd(PPh3)4 (811 mg, 0.701 mmol), and Zn(CN)2 (192 mg, 1.64 mmol) and placed under a nitrogen atmosphere. DMF (25 mL) was added to the flask and the reaction mixture was heated at 100 oC for 2.5 h. The reaction mixture was cooled and poured into H2O (100 mL) and EtOAc (100 mL), An emulsion formed and the mixture was filtered through a short plug of celite and then the layers were separated. The organic layer was washed with H2O (100 mL), dried (MgSO4), filtered, concentrated, and purified by chromatography (loaded with CH2CI2, eiuted with a gradient of 10-30% EtOAc in hexanes) to provide 329 mg of N-(6-cyano-pyridazin-3-yl)- 2,2-dimethyl-propionamde as a pale yellow solid. MS: (M+) 205. 1H NMR (400 MHz, CDCl3): delta 8.71 (bs, 1), 8.65 (d, 1, J = 9.3), 7.80 (d, 1, J = 9.3), 1.36 (s, 9)., 147362-88-7

The synthetic route of 147362-88-7 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; PFIZER PRODUCTS INC.; WO2007/34278; (2007); A2;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Simple exploration of 57041-95-9

The synthetic route of 57041-95-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.57041-95-9,6-Aminopyridazin-3(2H)-one,as a common compound, the synthetic route is as follows.

57041-95-9, A mixture of 6-aminopyridazin-3-ol (2 g, 18.00 mmol), NaOH (0.720 g, 18.00 mmol) and Mel (1.126 mL, 18.00 mmol) was stirred for 2.5 hr at 85 00 under Ar. The reaction mixture was concentrated. The crude material was purified by silica gel column chromatography (NH3 1% ICH2CI2/MeOH 4-7%) to afford the title product (538 mg, 4.30 mmol, 24 % yield) as a yellowsolid. tR: 0.25 mm (LC-MS 2); ESI-MS: 126 [M+H] (LC-MS 2); R = 0.36 (CH2CI2/MeOH 9:1).

The synthetic route of 57041-95-9 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; NOVARTIS AG; BLANK, Jutta; BORDAS, Vincent; COTESTA, Simona; GUAGNANO, Vito; RUEEGER, Heinrich; VAUPEL, Andrea; WO2014/191896; (2014); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Downstream synthetic route of 1352925-63-3

As the paragraph descriping shows that 1352925-63-3 is playing an increasingly important role.

1352925-63-3, Ethyl 4,6-dihydroxypyridazine-3-carboxylate is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a 5000 ml rb flask, ethyl 4,6-dihydroxypyridazine-3-carboxylate (200 g, 1086 mmol) was dissolved in THF (2000 mL), methanol (1000 mL) and water (800 mL). LiOH (137 g, 3258 mmol) was added slowly at rt and stirred at rt for 3-4 hr. The starting material was gone. The solvent was removed at 50 C. under reduced pressure to afford a yellow solid. The solid was acidified with aqueous HCl solution (400 ml) (1:1 ratio) at 0 C. and stirred at rt for 30-40 minutes. The solid was filtered and washed with water. It was then dried under vacuum for 1-2 hr. This solid was taken into 300 ml of methanol:DCM (2:8) and stirred at rt for 20-25 minutes. The mixture was filtered and the solid was washed with methanol and dried under vacuum for 1 hr. The desired product was obtained as a yellow solid, 4,6-dihydroxypyridazine-3-carboxylic acid (153 g, 951 mmol, 88% yield). MS (M+1) m/z: 156.9 (MH+). LC retention time 0.31 min [A]. 1H NMR (400 MHz, deuterium oxide) delta 6.00-5.34 (m, 1H), 4.75 (s, 7H), 1352925-63-3

As the paragraph descriping shows that 1352925-63-3 is playing an increasingly important role.

Reference:
Patent; BRISTOL-MYERS SQUIBB COMPANY; Liu, Chunjian; Yang, Michael G.; Xiao, Zili; Chen, Ling; Moslin, Ryan M.; Tokarski, John S.; Weinstein, David S.; (84 pag.)US2019/152948; (2019); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Brief introduction of 1834-27-1

As the paragraph descriping shows that 1834-27-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1834-27-1,6-Chloro-4-methylpyridazin-3(2H)-one,as a common compound, the synthetic route is as follows.

A solution of 6-chloro-4-methylpyridazin-3-ol (Intermediate X17; 0.50 g, 3.4 mmol) in DCM (20 mL) was treated with (5-(methoxycarbonyl)-2-methylphenyl)boronic acid (1.0 g, 5.2 mmol), Cu(OAc)2 (1.2 g, 6.9 mmol), pyridine 1-oxide (327 mg, 3.44 mmol) and pyridine (1.1 g, 14 mmol). The resulting mixture was stirred at ambient temperature open to the atmosphere for one overnight. The reaction mixture was diluted with DCM (100 mL) and washed with water (2 x 30 mL). The organic extracts were dried over anhydrous Na2SO4(), filtered and concentrated under vacuum. The crude residue was purified by silica gel flash chromatography (2-55% EtOAc/hexane as the gradient eluent) to afford the title compound (2.99 g, 99% yield). MS (apci) m/z = 293.0 (M+H), 295.0 [(M+H)+2] (with Cl pattern)., 1834-27-1

As the paragraph descriping shows that 1834-27-1 is playing an increasingly important role.

Reference:
Patent; ARRAY BIOPHARMA, INC.; ANDREWS, Steven W.; BLAKE, James F.; COOK, Adam; GUNAWARDANA, Indrani W.; HUNT, Kevin W.; METCALF, Andrew T.; MORENO, David; REN, Li; TANG, Tony P.; (263 pag.)WO2017/70708; (2017); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 65632-62-4

The synthetic route of 65632-62-4 has been constantly updated, and we look forward to future research findings.

65632-62-4,65632-62-4, (S)-1-((Benzyloxy)carbonyl)hexahydropyridazine-3-carboxylic acid is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step A: Preparation of l-(phenylmethyl) hydrogen tetrahydro-2-nitrosopyridazine-1 ,(35)(2H)-dicarboxylateA solution of sodium nitrite (1.03 g, 15.0 mmol) in 8 rnL of water was added dropwise over 10 minutes to a suspension of l-(phenylmethyl) hydrogen tetrahydropyridazine-l,(35)(2H)-dicarboxylate (2.64 g, 10.0 mmol; prepared as described inCoats et al. J. Org. Chem. 2004, 69, 1734) in 1 N hydrochloric acid (30 mL) at 4 0C. After3.5 h the reaction mixture was diluted with ethyl acetate (40 mL), and the layers were separated. The aqueous layer was extracted with ethyl acetate (2 X 20 mL), and the combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure to give 3.14 g of the title compound as a yellow oil. This compound was carried on without further purification or characterization.

The synthetic route of 65632-62-4 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; E.I. DU PONT DE NEMOURS AND COMPANY; WO2009/76440; (2009); A2;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem