New learning discoveries about 65202-50-8

The synthetic route of 65202-50-8 has been constantly updated, and we look forward to future research findings.

65202-50-8, Methyl 6-chloropyridazine-3-carboxylate is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

65202-50-8, Methyl 6-chloropyridazine-3-carboxylate (2.4 g), 3H-spiro[2-benzofuran-1,3′-pyrrolidine] hydrochloride (3.0 g) obtained in Example 43(5), potassium carbonate (2.0 g) and tetrabutylammonium iodide (520 mg) were suspended in tetrahydrofuran (150 mL), and the suspension was stirred under reflux overnight. The reaction mixture was diluted with ethyl acetate, and washed with aqueous sodium carbonate solution. The organic layer was dried over sodium sulfate and the solvent was evaporated under reduced pressure. Ethyl acetate-hexane was added and the resulting precipitate was collected by filtration to give the object product (1.8 g, 41percent). 1H NMR (300 MHz, DMSO-d6) delta ppm 2.23-2.34 (m, 1H) 2.39-2.48 (m, 1H) 3.58-4.08 (m, 7H) 5.06 (s, 2H) 6.97 (d, J=9.42 Hz, 1H) 7.29-7.41 (m, 3H) 7.44-7.52 (m, 1H) 7.86 (d, J=9.42 Hz, 1H)

The synthetic route of 65202-50-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Taniguchi, Takahiko; Miyata, Kenichi; Kubo, Osamu; US2010/69351; (2010); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Some tips on 65202-50-8

As the paragraph descriping shows that 65202-50-8 is playing an increasingly important role.

65202-50-8, Methyl 6-chloropyridazine-3-carboxylate is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

65202-50-8, Step B. A solution of ethyl 2-amino-4-(acetylamino)benzoate (4.03 g, 18.13 mmol, Example 4, Step A), p-toluenesulfonic acid, monohydrate (0.5 g, 2.63 mmol) and methyl 6-chloro-3-pyridazinecarboxylate [3.13 g, 18.14 mmol, prepared according to the procedure of Barlin, G. B. and Yap, C. Y. (Aust. J. Chem. 1977, 30, 2319-2322)] in 500 mL of toluene was refluxed under Dean-Stark conditions for 12 h. The mixture was concentrated, dissolved into chloroform, washed with saturated sodium bicarbonate solution, dried (MgSO4), filtered and concentrated. Medium pressure chromatography (silica gel, 5percent methanol in chloroform) afforded methyl 7-acetylamino-10-oxo-10H-pyridazino[6,1-b]-quinazoline-2-carboxylate as a yellow solid, mp 281¡ã-285¡ã C., dec.

As the paragraph descriping shows that 65202-50-8 is playing an increasingly important role.

Reference£º
Patent; Warner Lambert Company; US5340808; (1994); A;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Downstream synthetic route of 65202-50-8

The synthetic route of 65202-50-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.65202-50-8,Methyl 6-chloropyridazine-3-carboxylate,as a common compound, the synthetic route is as follows.

65202-50-8, Step 5; Methyl 6-(4-[2-(trifluoromethyl)benzoyl]piperazin-l-yUpyrida2ine-3-carboxylate; To a mixture of methyl -chloropyridazine-S-carboxylate (3.9 g, 22.6 mmol), l-[2- (trifluoromethyl)benzoyl]piperazine (7.0 g, 27.1 mmol) and potassium carbonate (6.5 g, 47 mmol) was added 100 mL of dioxane and the mixture was heated to reflux for 71 h. The mixture was cooled to room temperature and the solid filtered and swirled in 4: 1 ethepiethyl acetate at reflux for 45 min. The solid was filtered to provide the title compound.

The synthetic route of 65202-50-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; MERCK FROSST CANADA LTD.; WO2007/9236; (2007); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Downstream synthetic route of 65202-50-8

The synthetic route of 65202-50-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.65202-50-8,Methyl 6-chloropyridazine-3-carboxylate,as a common compound, the synthetic route is as follows.

Methyl -chloropyridazine-S-carboxylate (S49, 34 mg, 0.19 mmol), 6-(4,4,5,5-tetramethyl-l,3,2- dioxaborolan-2-yl)picolinonitrile (45 mg, 0.19 mmol), K2CO3 (51 mg, 0.39 mmol), and (Ph3P)4Pd (34 mg, 0.029 mmol) were slurried in DMF (0.3 M). The reaction vessel was evacuated and refilled with argon three times. The mixture was warmed at 85 ¡ãC for 16 h. The reaction mixture was cooled and diluted with EtOAc, washed with 9: 1 NH4OH:saturated aqueous NH4Cl and saturated aqueous NaCl, and then dried over Na2SO4. Evaporation yielded the crude product that was purified by flash chromatography (SiO2, 1.5 x 14 cm, 20-100percent EtOAc- hexanes) to afford the title compound (25 mg, 53percent) as a white solid: 1H NMR (CDCl3, 600 MHz) 5 9.03 (d, IH, J= 8.1 Hz), 8.75 (d, IH, J= 8.7 Hz), 8.36 (d, IH, J= 8.7 Hz), 8.09 (t, IH, J = 7.9 Hz), 7.84 (d, IH, J= 7.6 Hz), 4.12 (s, 3H); 13C NMR (CDCl3, 150 MHz) delta 164.4, 158.2, 154.4, 151.7, 138.7, 133.9, 129.8, 128.7, 125.5, 125.4, 1 16.9, 53.6; HRMS-ESI-TOF m/z 241.0721 ([M+H]+, C12H8N4O2 requires 241.0720)., 65202-50-8

The synthetic route of 65202-50-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; THE SCRIPPS RESEARCH INSTITUTE; BOGER, Dale, L.; WO2010/5572; (2010); A2;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Brief introduction of 65202-50-8

65202-50-8 Methyl 6-chloropyridazine-3-carboxylate 12379801, apyridazine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.65202-50-8,Methyl 6-chloropyridazine-3-carboxylate,as a common compound, the synthetic route is as follows.

65202-50-8, Methyl 6-{3-r(2-bromophenyl)oxylazetidin-l-yl}pyridazine-3-carboxylate; Into a flame-dried 100 mL round-bottom flask equipped with a magnetic stirring bar and under N2 was added methyl 6-chloropyridazine-3-carboxylate (848 mg, 4.91 mmol), 3- [(2-bromophenyl)oxy]azetidine hydrochloride (1.3 g, 4.91 mmol) and potassium carbonate (2.04 g, 14.7 mmol) in dioxane (30 mL). The reaction mixture was heated to reflux for 16 h overnight. The reaction mixture was cooled to room temperature and quenched with water (10 mL). The reaction mixture was concentrated and a beige solid precipitated out of solution. The solid was diluted with water (20 mL) and filtered through WhatmanNo.l paper on a Hirsch funnel, washing with water. The resulting beige solid was dried on the vacuum pump overnight, giving the desired product.MS (ESI, Q+) m/z 364 (M + 1, 79Br), 366 (M + 1, 81Br).

65202-50-8 Methyl 6-chloropyridazine-3-carboxylate 12379801, apyridazine compound, is more and more widely used in various fields.

Reference£º
Patent; MERCK FROSST CANADA LTD.; WO2007/143823; (2007); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Simple exploration of 65202-50-8

As the paragraph descriping shows that 65202-50-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.65202-50-8,Methyl 6-chloropyridazine-3-carboxylate,as a common compound, the synthetic route is as follows.,65202-50-8

A solution of THF (2.5 mL) and toluene (10 mL), and methylmagnesiurn chloride (3.0 M, 9.7 mL) were stirred at -2O0C under N2 atmosphere followed by the addition of f-BuOH (0.5 mL, 5.79 mrnol) in THF (7 mL) dropwise. The solution was allowed to stir for 30 min and warmed to 30C and cooled backed down to -200C followed by the addition of the methyl 6- chloropyridazine-3-carboxylate (1.0 g, 5.79 mmol) in portions. The solution quickly turned dark violet and was stirred at 00C for 30 min. The solution was then poured into a flask containing 1 N aqueous hydrochloric acid at -50C, diluted with ethyl acetate, and stirred for 10 min. The layers were then separated and the organic layer was washed with saturated aqueous sodium bicarbonate and brine. The acidic aqueous layer was neutralized with saturated aqueous sodium bicarbonate and extracted with ethyl acetate. The organic layers were combined and concentrated in vacuo. Purification via flash chromatography (silica, 0-100percent ethyl acetate/hexanes) provided the title compound. LRMS (ESI) calc’d for C7H10ClN2O [M+H]+: 173.1, Found: 173.1

As the paragraph descriping shows that 65202-50-8 is playing an increasingly important role.

Reference£º
Patent; MERCK & CO., INC.; MACHACEK, Michelle, R.; HAIDLE, Andrew; ZABIEREK, Anna, A.; KONRAD, Kaleen, M.; ALTMAN, Michael, D.; WO2010/11375; (2010); A2;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Brief introduction of 65202-50-8

65202-50-8 Methyl 6-chloropyridazine-3-carboxylate 12379801, apyridazine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.65202-50-8,Methyl 6-chloropyridazine-3-carboxylate,as a common compound, the synthetic route is as follows.

EXAMPLE 2The preparation of methyl 3-[3-(5-bromopyrimidin-2-yl)benzyl]-1,2,4-triazolo[4,3-b]pyridazine-6-carboxylate (“A9”) and butyl 3-[3-(5-bromopyrimidin-2-yl)benzyl]-1,2,4-triazolo[4,3-b]pyridazine-6-carboxylate (“A10”), preparation of 3-[3-(5-bromopyrimidin-2-yl)benzyl]-1,2,4-triazolo[4,3-b]-pyridazine-6-carboxylic acid (“A11”), and preparation of N-methyl-3-[3-(5-bromopyrimidin-2-yl)benzyl]-1,2,4-triazolo[4,3-b]pyridazine-6-carboxamide (“A12”) is carried out analogously to the following scheme, 65202-50-8

65202-50-8 Methyl 6-chloropyridazine-3-carboxylate 12379801, apyridazine compound, is more and more widely used in various fields.

Reference£º
Patent; MERCK PATENT GMBH MIT BESCHRAENKTER HAFTUNG; US2011/257173; (2011); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 65202-50-8

The synthetic route of 65202-50-8 has been constantly updated, and we look forward to future research findings.

65202-50-8, Methyl 6-chloropyridazine-3-carboxylate is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

65202-50-8, In a nitrogen atmosphere, a mixture of methyl 6-chloropyridazine-3-carboxylate (900 mg), 4-methoxy-4-(4-(pentafluorosulfanyl)phenyl)piperidine hydrochloride (2.030 g), potassium carbonate (3604 mg), TBAI (385 mg) and dehydrated THF (80 mL) was stirred overnight at 80¡ãC. The mixture was poured to water at room temperature, followed by extraction with ethyl acetate. The organic layer was washed with water and saturated brine, dried over magnesium sulfate and then concentrated. The obtained residue was crystallized from ethyl acetate and hexane to obtain the title compound (2.25 g). MS: [M+H]+ 454.0

The synthetic route of 65202-50-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Takeda Pharmaceutical Company Limited; IMAMURA Keisuke; TOMITA Naoki; ITO Yoshiteru; ONO Koji; MAEZAKI Hironobu; NII Noriyuki; (123 pag.)EP3118200; (2017); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 65202-50-8

The synthetic route of 65202-50-8 has been constantly updated, and we look forward to future research findings.

65202-50-8, Methyl 6-chloropyridazine-3-carboxylate is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

65202-50-8, 6-(3,6-Dihydro-2H-pyran-4-yl)pyridazin-3-carboxylic Acid Methyl 6-chloropyridazine-3-carboxylate (1.00 g, 5.79 mmol), 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydro-2H-pyran (1.22 g, 5.79 mmol), Pd(PPh3)4 (536 mg, 0.44 mmol) and Cs2CO3 (3.40 g, 10.4 mmol) were suspended in dioxane (8 mL) and water (8 mL) and heated in a microwave reactor at 125¡ã C. for 30 min. 1M aq HCl (10 mL) was added, the precipitate was removed by filtration and the filtrate was concentrated in vacuo. The residue was passed through a silica pad eluting with 30percent MeOH in DCM and concentrated in vacuo to give the title compound as a white solid (946 mg, 79.2percent). LCMS (ES+): 207.1 [MH]+. HPLC: Rt 3.30 min, 49.9percent purity.

The synthetic route of 65202-50-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Proximagen Limited; Espensen, Max; Patient, Lee; Evans, David; Savory, Edward; Simpson, Iain; US2014/275040; (2014); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Some tips on 65202-50-8

As the paragraph descriping shows that 65202-50-8 is playing an increasingly important role.

65202-50-8, Methyl 6-chloropyridazine-3-carboxylate is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Methyl 6-chloropyridazine-3-carboxylate (1.4 g), spiro[1-benzofuran-3,3′-pyrrolidine] (1.5 g), potassium carbonate (1.4 g) and tetrabutylammonium iodide (370 mg) were suspended in tetrahydrofuran (80 mL), and the suspension was stirred under reflux overnight. The reaction mixture was diluted with ethyl acetate, and washed with aqueous sodium carbonate solution. The organic layer was dried over sodium sulfate and the solvent was evaporated under reduced pressure. Ethyl acetate-hexane was added and the resulting precipitate was collected by filtration to give the object product (2.2 g, 88%). 1H NMR (300 MHz, DMSO-d6) delta ppm 2.21-2.41 (m, 2H) 3.52-4.04 (m, 7H) 4.43-4.54 (m, 2H) 6.80-7.02 (m, 3H) 7.13-7.25 (m, 1H) 7.32 (d, J=7.35 Hz, 1H) 7.87 (d, J=9.42 Hz, 1 H)

As the paragraph descriping shows that 65202-50-8 is playing an increasingly important role.

Reference£º
Patent; Taniguchi, Takahiko; Miyata, Kenichi; Kubo, Osamu; US2010/69351; (2010); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem