Yao, Zhuanle et al. published their research in Yingyong Huagong in 2009 | CAS: 5754-18-7

1,2-Dihydro-4-methyl-3,6-pyridazinedione (cas: 5754-18-7) belongs to pyridazine derivatives. Pyridazines is a six-membered nitrogen-containing significant heterocycle. It has received considerable interest because of its useful applications as natural products, pharmaceuticals, and various bioactive molecules. The unsubstituted pyridazines are more resistant to eletrophilic substitution due to the nature of withdrawal of electron density from the ring by two heteroatoms, while the related electron deficiency of the ring makes pyridazine more easily attacked by nucleophiles.HPLC of Formula: 5754-18-7

Synthesis of 3,6-dichloro-4-pyridazinecarboxylic acid was written by Yao, Zhuanle;Shi, Qiang;Fan, Xuezhong;Wang, Rongbing. And the article was included in Yingyong Huagong in 2009.HPLC of Formula: 5754-18-7 This article mentions the following:

The synthesis of the target compound was achieved (52% yield, 98% purity) using hydrazine dihydrochloride and citraconic anhydride (3-methyl-2,5-furandione) as starting materials, the product structure thus obtained was confirmed by IR and 1H-NMR, factors affecting product formation were determined and optimized reaction conditions were confirmed. In the experiment, the researchers used many compounds, for example, 1,2-Dihydro-4-methyl-3,6-pyridazinedione (cas: 5754-18-7HPLC of Formula: 5754-18-7).

1,2-Dihydro-4-methyl-3,6-pyridazinedione (cas: 5754-18-7) belongs to pyridazine derivatives. Pyridazines is a six-membered nitrogen-containing significant heterocycle. It has received considerable interest because of its useful applications as natural products, pharmaceuticals, and various bioactive molecules. The unsubstituted pyridazines are more resistant to eletrophilic substitution due to the nature of withdrawal of electron density from the ring by two heteroatoms, while the related electron deficiency of the ring makes pyridazine more easily attacked by nucleophiles.HPLC of Formula: 5754-18-7

Referemce:
Pyridazine – Wikipedia,
Pyridazine | C4H4N2 – PubChem

 

Ochiai, Koji et al. published their research in Bioorganic & Medicinal Chemistry in 2012 | CAS: 5754-18-7

1,2-Dihydro-4-methyl-3,6-pyridazinedione (cas: 5754-18-7) belongs to pyridazine derivatives. Pyridazine-based compounds continued to be a great source of biologically active compounds as evidenced by the number of publications which emerged in 2021. Pyridazine compounds have attracted interest in various fields like medicinal, industrial, and agricultural research as they are used for numerous biological activities and other applications.Application In Synthesis of 1,2-Dihydro-4-methyl-3,6-pyridazinedione

Phosphodiesterase inhibitors. Part 3: Design, synthesis and structure-activity relationships of dual PDE3/4-inhibitory fused bicyclic heteroaromatic-dihydropyridazinones with anti-inflammatory and bronchodilatory activity was written by Ochiai, Koji;Takita, Satoshi;Eiraku, Tomohiko;Kojima, Akihiko;Iwase, Kazuhiko;Kishi, Tetsuya;Fukuchi, Kazunori;Yasue, Tokutaro;Adams, David R.;Allcock, Robert W.;Jiang, Zhong;Kohno, Yasushi. And the article was included in Bioorganic & Medicinal Chemistry in 2012.Application In Synthesis of 1,2-Dihydro-4-methyl-3,6-pyridazinedione This article mentions the following:

(-)-6-(7-Methoxy-2-trifluoromethylpyrazolo[1,5-a]pyridin-4-yl)-5-methyl-4,5-dihydro-3-(2H)-pyridazinone (KCA-1490) is a dual PDE3/4 inhibitor that exhibits potent combined bronchodilatory and anti-inflammatory activity. A survey of potential bicyclic heteroaromatic replacement subunits for the pyrazolo[1,5-a]pyridine core of KCA-1490 has identified the 4-methoxy-2-(trifluoromethyl)benzo[d]thiazol-7-yl and 8-methoxy-2-(trifluoromethyl)quinolin-5-yl analogs as dual PDE3/4-inhibitory compounds that potently suppress histamine-induced bronchoconstriction and exhibit anti-inflammatory activity in vivo. In the experiment, the researchers used many compounds, for example, 1,2-Dihydro-4-methyl-3,6-pyridazinedione (cas: 5754-18-7Application In Synthesis of 1,2-Dihydro-4-methyl-3,6-pyridazinedione).

1,2-Dihydro-4-methyl-3,6-pyridazinedione (cas: 5754-18-7) belongs to pyridazine derivatives. Pyridazine-based compounds continued to be a great source of biologically active compounds as evidenced by the number of publications which emerged in 2021. Pyridazine compounds have attracted interest in various fields like medicinal, industrial, and agricultural research as they are used for numerous biological activities and other applications.Application In Synthesis of 1,2-Dihydro-4-methyl-3,6-pyridazinedione

Referemce:
Pyridazine – Wikipedia,
Pyridazine | C4H4N2 – PubChem

 

Tsuchiya, Takashi et al. published their research in Chemical & Pharmaceutical Bulletin in 1971 | CAS: 5754-18-7

1,2-Dihydro-4-methyl-3,6-pyridazinedione (cas: 5754-18-7) belongs to pyridazine derivatives. Pyridazines are rare in nature, possibly reflecting the scarcity of naturally occurring hydrazines, common building blocks for the synthesis of these heterocycles. Pyridazine can act as a hydrogen bond acceptor to improve the physicochemical properties of drug molecules by increasing their water solubility, and has a high affinity for complexing with targets due to its dipole moment.Name: 1,2-Dihydro-4-methyl-3,6-pyridazinedione

Photochemistry. II. Formation of methyl paraconates and dimethyl succinates from pyridazines was written by Tsuchiya, Takashi;Arai, Heihachiro;Igeta, Hiroshi. And the article was included in Chemical & Pharmaceutical Bulletin in 1971.Name: 1,2-Dihydro-4-methyl-3,6-pyridazinedione This article mentions the following:

Irradiation of 6-chloro-3(2H)-pyridazones, maleic hydrazides, and 3,6-dichloropyridazines in MeOH containing HCl, afforded γ-lactones, Me paraconates (I), and dimethyl succinates MeO2CCH2CH(R)CO2Me (II). A short time irradiation of 3,6-dichloropyridazines resulted in the formation of methylated pyridazines (III and IV), hydroxymethylated pyridazines (V), and methylated pyridazones (VI), along with the γ-lactones (I) and the succinates (II). The mechanism of the formation of the γ-lactones and the succinates was also discussed. In the experiment, the researchers used many compounds, for example, 1,2-Dihydro-4-methyl-3,6-pyridazinedione (cas: 5754-18-7Name: 1,2-Dihydro-4-methyl-3,6-pyridazinedione).

1,2-Dihydro-4-methyl-3,6-pyridazinedione (cas: 5754-18-7) belongs to pyridazine derivatives. Pyridazines are rare in nature, possibly reflecting the scarcity of naturally occurring hydrazines, common building blocks for the synthesis of these heterocycles. Pyridazine can act as a hydrogen bond acceptor to improve the physicochemical properties of drug molecules by increasing their water solubility, and has a high affinity for complexing with targets due to its dipole moment.Name: 1,2-Dihydro-4-methyl-3,6-pyridazinedione

Referemce:
Pyridazine – Wikipedia,
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 5754-18-7

5754-18-7 1,2-Dihydro-4-methyl-3,6-pyridazinedione 79826, apyridazine compound, is more and more widely used in various fields.

5754-18-7, 1,2-Dihydro-4-methyl-3,6-pyridazinedione is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5754-18-7, 4-Methyl-1,2-dihydropyridazine-3,6-dione (9.48 g, 75.2 mmol) was suspended in phosphorus oxychloride (70 mL, 750 mmol) at ambient temperature under an atmosphere of N2 and then heated at gentle reflux for 4 h to give a golden yellow homogenous solution. The mixture was allowed to cool and excess phosphorous oxychloride was removed by vacuum distillation (14 mbar, 50-70 C). The residual viscous brown oil was slowly added to ice-cooled sat. NaHCO3 solution (200 mL) with vigorous stirring. The resulting heterogenous mixture was adjusted to pH 6 by the slow addition of solid NaHCO3 and then extracted with EtOAc (2 x 60 mL). The combined organic phase was washed with sat. NaCl solution (30 mL), dried (MgSO4) and evaporated to give the title compound (11.5 g, 70.8 mmol; 94%) as a yellow powder; mp 87-88C (from light petrol/diethyl ether); IR (KBr): 3054, 1567, 1434, 1351, 1326, 1145, 1121, 914, 720 cm-1. 1H NMR (200 MHz, CDCl3): delta 2.42 (3H, d, J = 1.0 Hz), 7.41 (1 H, q, J = 0.9 Hz); 13C NMR (50 MHz, CDCl3): 19.2 (CH3), 130.1 (CH-5), 140.7 (C-4), 155.6 (C-6), 157.3 (C-3); LRMS (EI) 162 ([M+]). Anal. calcd for C5H4Cl2N2: C, 36.84; H, 2.47; N, 17.19. Found: C, 36.93; H, 2.57; N, 17.48.

5754-18-7 1,2-Dihydro-4-methyl-3,6-pyridazinedione 79826, apyridazine compound, is more and more widely used in various fields.

Reference:
Article; Ochiai, Koji; Takita, Satoshi; Eiraku, Tomohiko; Kojima, Akihiko; Iwase, Kazuhiko; Kishi, Tetsuya; Fukuchi, Kazunori; Yasue, Tokutaro; Adams, David R.; Allcock, Robert W.; Jiang, Zhong; Kohno, Yasushi; Bioorganic and Medicinal Chemistry; vol. 20; 5; (2012); p. 1644 – 1658;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 5754-18-7

5754-18-7 1,2-Dihydro-4-methyl-3,6-pyridazinedione 79826, apyridazine compound, is more and more widely used in various fields.

5754-18-7, 1,2-Dihydro-4-methyl-3,6-pyridazinedione is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5754-18-7, 4-Methyl-1,2-dihydropyridazine-3,6-dione (9.48 g, 75.2 mmol) was suspended in phosphorus oxychloride (70 mL, 750 mmol) at ambient temperature under an atmosphere of N2 and then heated at gentle reflux for 4 h to give a golden yellow homogenous solution. The mixture was allowed to cool and excess phosphorous oxychloride was removed by vacuum distillation (14 mbar, 50-70 C). The residual viscous brown oil was slowly added to ice-cooled sat. NaHCO3 solution (200 mL) with vigorous stirring. The resulting heterogenous mixture was adjusted to pH 6 by the slow addition of solid NaHCO3 and then extracted with EtOAc (2 x 60 mL). The combined organic phase was washed with sat. NaCl solution (30 mL), dried (MgSO4) and evaporated to give the title compound (11.5 g, 70.8 mmol; 94%) as a yellow powder; mp 87-88C (from light petrol/diethyl ether); IR (KBr): 3054, 1567, 1434, 1351, 1326, 1145, 1121, 914, 720 cm-1. 1H NMR (200 MHz, CDCl3): delta 2.42 (3H, d, J = 1.0 Hz), 7.41 (1 H, q, J = 0.9 Hz); 13C NMR (50 MHz, CDCl3): 19.2 (CH3), 130.1 (CH-5), 140.7 (C-4), 155.6 (C-6), 157.3 (C-3); LRMS (EI) 162 ([M+]). Anal. calcd for C5H4Cl2N2: C, 36.84; H, 2.47; N, 17.19. Found: C, 36.93; H, 2.57; N, 17.48.

5754-18-7 1,2-Dihydro-4-methyl-3,6-pyridazinedione 79826, apyridazine compound, is more and more widely used in various fields.

Reference:
Article; Ochiai, Koji; Takita, Satoshi; Eiraku, Tomohiko; Kojima, Akihiko; Iwase, Kazuhiko; Kishi, Tetsuya; Fukuchi, Kazunori; Yasue, Tokutaro; Adams, David R.; Allcock, Robert W.; Jiang, Zhong; Kohno, Yasushi; Bioorganic and Medicinal Chemistry; vol. 20; 5; (2012); p. 1644 – 1658;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 5754-18-7

5754-18-7 1,2-Dihydro-4-methyl-3,6-pyridazinedione 79826, apyridazine compound, is more and more widely used in various fields.

5754-18-7, 1,2-Dihydro-4-methyl-3,6-pyridazinedione is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5754-18-7, 4-Methyl-1,2-dihydropyridazine-3,6-dione (9.48 g, 75.2 mmol) was suspended in phosphorus oxychloride (70 mL, 750 mmol) at ambient temperature under an atmosphere of N2 and then heated at gentle reflux for 4 h to give a golden yellow homogenous solution. The mixture was allowed to cool and excess phosphorous oxychloride was removed by vacuum distillation (14 mbar, 50-70 C). The residual viscous brown oil was slowly added to ice-cooled sat. NaHCO3 solution (200 mL) with vigorous stirring. The resulting heterogenous mixture was adjusted to pH 6 by the slow addition of solid NaHCO3 and then extracted with EtOAc (2 x 60 mL). The combined organic phase was washed with sat. NaCl solution (30 mL), dried (MgSO4) and evaporated to give the title compound (11.5 g, 70.8 mmol; 94%) as a yellow powder; mp 87-88C (from light petrol/diethyl ether); IR (KBr): 3054, 1567, 1434, 1351, 1326, 1145, 1121, 914, 720 cm-1. 1H NMR (200 MHz, CDCl3): delta 2.42 (3H, d, J = 1.0 Hz), 7.41 (1 H, q, J = 0.9 Hz); 13C NMR (50 MHz, CDCl3): 19.2 (CH3), 130.1 (CH-5), 140.7 (C-4), 155.6 (C-6), 157.3 (C-3); LRMS (EI) 162 ([M+]). Anal. calcd for C5H4Cl2N2: C, 36.84; H, 2.47; N, 17.19. Found: C, 36.93; H, 2.57; N, 17.48.

5754-18-7 1,2-Dihydro-4-methyl-3,6-pyridazinedione 79826, apyridazine compound, is more and more widely used in various fields.

Reference:
Article; Ochiai, Koji; Takita, Satoshi; Eiraku, Tomohiko; Kojima, Akihiko; Iwase, Kazuhiko; Kishi, Tetsuya; Fukuchi, Kazunori; Yasue, Tokutaro; Adams, David R.; Allcock, Robert W.; Jiang, Zhong; Kohno, Yasushi; Bioorganic and Medicinal Chemistry; vol. 20; 5; (2012); p. 1644 – 1658;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem