Brief introduction of 144294-43-9

144294-43-9, The synthetic route of 144294-43-9 has been constantly updated, and we look forward to future research findings.

144294-43-9, 3-Amino-5-methylpyridazine is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

0388-1 A mixture of 6-chloro-N-(pyrimidin-5-yl)-1,5-naphthyridine-3-amine (10 mg), 5-methylpyridazine-3-amine (6.4 mg), tris(dibenzylideneacetone)dipalladium(0) (3.5 mg), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (4.5 mg), cesium carbonate (25 mg), and 1,4-dioxane (1 mL) was stirred at 140 C. for 30 minutes using a microwave reaction apparatus. The reaction mixture was cooled to room temperature, and the solid matter was collected by filtration, thereby obtaining N2-(5-methylpyridazin-3-yl)-N7-(pyrimidin-5-yl)-1,5-naphthyridine-2,7-diamine (1.6 mg). 1H-NMR(CDCl3/CD3OD=4/1) delta: 8.81 (1H, s), 8.75 (2H, s), 8.73 (1H, brs), 8.64 (1H, brs), 8.51 (1H, d, J=2.4 Hz), 8.12 (1H, d, J=9.0 Hz), 7.83 (1H, d, J=2.4 Hz), 7.36 (1H, d, J=9.0 Hz), 2.45 (3H, s). MS m/z (M+H): 331.

144294-43-9, The synthetic route of 144294-43-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; FUJIFILM Corporation; FURUYAMA, Hidetomo; KURIHARA, Hideki; TERAO, Takahiro; NAKAGAWA, Daisuke; TANABE, Shintaro; KATO, Takayuki; YAMAMOTO, Masahiko; SEKINE, Shinichiro; MASHIKO, Tomoyuki; INUKI, Shinsuke; UEDA, Satoshi; US2015/322063; (2015); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Some tips on 144294-43-9

144294-43-9 3-Amino-5-methylpyridazine 14743344, apyridazine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.144294-43-9,3-Amino-5-methylpyridazine,as a common compound, the synthetic route is as follows.

0396-1 A mixture of 7-(3-(((tert-butyldimethylsilyl)oxy)methyl)-1-methyl-1H-pyrazol-4-yl)-2-chloro-1,5-naphthyridine (25 mg), 5-methylpyridazine-3-amine (11 mg), tris (dibenzylideneacetone)dipalladium(0) (5 mg), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (10 mg), cesium carbonate (20 mg), and 1,4-dioxane (1 mL) was stirred at 140 C. for 30 minutes using a microwave reaction apparatus. The reaction mixture was cooled to room temperature, the insolubles were filtered off using celite, and the obtained solution was purified by silica gel column chromatography (methanol-ethyl acetate, NH silica), thereby obtaining 7-(3-(((tert-butyldimethylsilyl)oxy)methyl)-1-methyl-1H-pyrazol-4-yl)-N-(5-methylpyridazin-3-yl)-1,5-naphthyridine-2-amine (12 mg). 1H-NMR(CDCl3) delta: 8.97 (1H, brs), 8.78 (1H, brs), 8.73 (1H, brs), 8.37 (1H, s), 8.26 (1H, d, J=8.4 Hz), 7.71 (1H, s), 7.44 (1H, d, J=8.4 Hz), 4.84 (2H, s), 3.98 (3H, s), 2.45 (3H, s), 0.87 (9H, s), 0.11 (6H, s). MS m/z (M+H): 462., 144294-43-9

144294-43-9 3-Amino-5-methylpyridazine 14743344, apyridazine compound, is more and more widely used in various fields.

Reference£º
Patent; FUJIFILM Corporation; FURUYAMA, Hidetomo; KURIHARA, Hideki; TERAO, Takahiro; NAKAGAWA, Daisuke; TANABE, Shintaro; KATO, Takayuki; YAMAMOTO, Masahiko; SEKINE, Shinichiro; MASHIKO, Tomoyuki; INUKI, Shinsuke; UEDA, Satoshi; US2015/322063; (2015); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Analyzing the synthesis route of 144294-43-9

The synthetic route of 144294-43-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.144294-43-9,3-Amino-5-methylpyridazine,as a common compound, the synthetic route is as follows.

0158-2 A mixture of 6-chloro-N-(5-(2-morpholinoethoxyl)pyridin-3-yl)-1,5-naphthyridine-3-amine (10 mg), 5-methylpyridazine-3-amine (4 mg), tris(dibenzylideneacetone)dipalladium(0) (5 mg), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (10 mg), and cesium carbonate (20 mg) in 1,4-dioxane (1 mL) was stirred at 140 C. for 30 minutes using a microwave reaction apparatus. The reaction mixture was cooled to room temperature, the insolubles were filtered off using celite, and the obtained solution was purified by silica gel column chromatography (methanol-ethyl acetate, NH silica), thereby obtaining N2-(5-methylpyridazin-3-yl)-N7-(5-(2-morpholinoethoxyl)pyridin-3-yl)-1,5-naphthyridine-2,7-diamine (1.9 mg). 1H-NMR(CDCl3/CD3OD=4/1) delta: 8.67 (1H, brs), 8.63 (1H, brs), 8.50 (1H, brs), 8.14 (1H, brs), 8.11 (1H, d, J=9.0 Hz), 7.91 (1H, brs), 7.78 (1H, brs), 7.24 (1H, d, J=9.0 Hz), 7.21 (1H, brs), 4.20 (2H, t, J=5.4 Hz), 3.79-3.71 (4H, m), 2.85 (2H, t, J=5.4 Hz), 2.66-2.56 (4H, m), 2.43 (3H, s). MS m/z (M+H): 459.

The synthetic route of 144294-43-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; FUJIFILM Corporation; FURUYAMA, Hidetomo; KURIHARA, Hideki; TERAO, Takahiro; NAKAGAWA, Daisuke; TANABE, Shintaro; KATO, Takayuki; YAMAMOTO, Masahiko; SEKINE, Shinichiro; MASHIKO, Tomoyuki; INUKI, Shinsuke; UEDA, Satoshi; US2015/322063; (2015); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Analyzing the synthesis route of 144294-43-9

The synthetic route of 144294-43-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.144294-43-9,3-Amino-5-methylpyridazine,as a common compound, the synthetic route is as follows.

0158-2 A mixture of 6-chloro-N-(5-(2-morpholinoethoxyl)pyridin-3-yl)-1,5-naphthyridine-3-amine (10 mg), 5-methylpyridazine-3-amine (4 mg), tris(dibenzylideneacetone)dipalladium(0) (5 mg), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (10 mg), and cesium carbonate (20 mg) in 1,4-dioxane (1 mL) was stirred at 140 C. for 30 minutes using a microwave reaction apparatus. The reaction mixture was cooled to room temperature, the insolubles were filtered off using celite, and the obtained solution was purified by silica gel column chromatography (methanol-ethyl acetate, NH silica), thereby obtaining N2-(5-methylpyridazin-3-yl)-N7-(5-(2-morpholinoethoxyl)pyridin-3-yl)-1,5-naphthyridine-2,7-diamine (1.9 mg). 1H-NMR(CDCl3/CD3OD=4/1) delta: 8.67 (1H, brs), 8.63 (1H, brs), 8.50 (1H, brs), 8.14 (1H, brs), 8.11 (1H, d, J=9.0 Hz), 7.91 (1H, brs), 7.78 (1H, brs), 7.24 (1H, d, J=9.0 Hz), 7.21 (1H, brs), 4.20 (2H, t, J=5.4 Hz), 3.79-3.71 (4H, m), 2.85 (2H, t, J=5.4 Hz), 2.66-2.56 (4H, m), 2.43 (3H, s). MS m/z (M+H): 459.

The synthetic route of 144294-43-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; FUJIFILM Corporation; FURUYAMA, Hidetomo; KURIHARA, Hideki; TERAO, Takahiro; NAKAGAWA, Daisuke; TANABE, Shintaro; KATO, Takayuki; YAMAMOTO, Masahiko; SEKINE, Shinichiro; MASHIKO, Tomoyuki; INUKI, Shinsuke; UEDA, Satoshi; US2015/322063; (2015); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Brief introduction of 144294-43-9

The synthetic route of 144294-43-9 has been constantly updated, and we look forward to future research findings.

144294-43-9, 3-Amino-5-methylpyridazine is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step 1: Preparation of 4,6-dibromo-5-methylpyridazin-3-amine A solution of Br2 (9.6 g, 60.07 mmol) in methanol (30 mL) was added dropwise into the mixture of 5-methylpyridazin-3-amine (3 g, 27.49 mmol), methanol (100 mL), and sodium bicarbonate (11.5 g, 136.89 mmol) at 0 C. The resulting solution was stirred for 2 h at room temperature, diluted with water, extracted with ethyl acetate, dried over sodium sulfate, and concentrated under vacuum. The residue was purified by a silica gel column eluting with ethyl acetate/petroleum ether (1/4) to afford the title compound (4.0 g, 55%) as a brown solid. LCMS [M+H+] 266.

The synthetic route of 144294-43-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Genentech, Inc.; Terrett, Jack Alexander; Chen, Huifen; Constantineau-Forget, Lea; Larouche-Gauthier, Robin; Lepissier, Luce; Beaumier, Francis; Dery, Martin; Grand-Maitre, Chantal; Sturino, Claudio; Volgraf, Matthew; Villemure, Elisia; (138 pag.)US2019/284179; (2019); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem