Chen, Linfeng et al. published their research in Sensors and Actuators, B: Chemical in 2017 | CAS: 141-30-0

3,6-Dichloropyridazine (cas: 141-30-0) belongs to pyridazine derivatives. Pyridazine-based compounds continued to be a great source of biologically active compounds as evidenced by the number of publications which emerged in 2021. Pyridazine can act as a hydrogen bond acceptor to improve the physicochemical properties of drug molecules by increasing their water solubility, and has a high affinity for complexing with targets due to its dipole moment.Safety of 3,6-Dichloropyridazine

Highly selective and sensitive determination of copper ion based on a visual fluorescence method was written by Chen, Linfeng;Tian, Xike;Yang, Chao;Li, Yong;Zhou, Zhaoxin;Wang, Yanxin;Xiang, Fang. And the article was included in Sensors and Actuators, B: Chemical in 2017.Safety of 3,6-Dichloropyridazine This article mentions the following:

A novel ratiometric fluorescence sensor for rapid and on-site visual detection of Cu2+ was designed and synthesized by integrating yellow-emission rhodamine fluorophore (RL) and red-emission CdTe@SiO2 QDs. The as-prepared nanohybrid fluorescence sensor shows dual-emissions at 537 nm and 654 nm under a single excitation at 500 nm in the presence of Cu2+. Owing to the strong chelating ability of RL toward Cu2+, the yellow fluorescence of RL could be selectively enhanced while the red fluorescence of CdTe QDs is almost unchanged, leading to an obvious fluorescence color change from red to yellow, which could be used for visual and ratiometric detection of Cu2+. This nanohybrid sensor exhibits excellent selectivity, sensitivity and anti-interference to Cu2+ detection and the detection limit is as low as 8.4 nM. Addnl., a simple device test strip for rapid and on-site detection of Cu2+ has been designed by immobilizing the RL-CdTe@SiO2 QDs on a common filter paper. This simple and effective paper-based sensor has a visual detection limit of 0.5μM, showing its promising application for on-site and rapid sensing of Cu2+ in pollution water. In the experiment, the researchers used many compounds, for example, 3,6-Dichloropyridazine (cas: 141-30-0Safety of 3,6-Dichloropyridazine).

3,6-Dichloropyridazine (cas: 141-30-0) belongs to pyridazine derivatives. Pyridazine-based compounds continued to be a great source of biologically active compounds as evidenced by the number of publications which emerged in 2021. Pyridazine can act as a hydrogen bond acceptor to improve the physicochemical properties of drug molecules by increasing their water solubility, and has a high affinity for complexing with targets due to its dipole moment.Safety of 3,6-Dichloropyridazine

Referemce:
Pyridazine – Wikipedia,
Pyridazine | C4H4N2 – PubChem