Evidence for Simultaneous Dearomatization of Two Aromatic Rings under Mild Conditions in Cu(I)-Catalyzed Direct Asymmetric Dearomatization of Pyridine was written by Gribble, Michael W.;Liu, Richard Y.;Buchwald, Stephen L.. And the article was included in Journal of the American Chemical Society in 2020.Application of 19064-65-4 This article mentions the following:
Bis(phosphine) copper hydride complexes are uniquely able to catalyze direct dearomatization of unactivated pyridines with carbon nucleophiles, but the mechanistic basis for this result has been unclear. Here we show that, contrary to our initial hypotheses, the catalytic mechanism is monometallic and proceeds via dearomative rearrangement of the phenethylcopper nucleophile to a Cpara-metalated form prior to reaction at heterocycle C4. Our studies support an unexpected heterocycle-promoted pathway for this net 1,5-Cu-migration beginning with a doubly dearomative imidoyl-Cu-ene reaction. Kinetics, substituent effects, computational modeling, and spectroscopic studies support the involvement of this unusual process. In this pathway, the CuL2 fragment subsequently mediates a stepwise Cope rearrangement of the doubly dearomatized intermediate to the give the C4-functionalized 1,4-dihydropyridine, lowering a second barrier that would otherwise prohibit efficient asym. catalysis. In the experiment, the researchers used many compounds, for example, 3-Methoxypyridazine (cas: 19064-65-4Application of 19064-65-4).
3-Methoxypyridazine (cas: 19064-65-4) belongs to pyridazine derivatives. The pyridazine structure is also found within the structure of several drugs such as cefozopran, cadralazine, minaprine, pipofezine, and hydralazine. Pyridazine is bioavailable (especially in the CNS) and can reduce toxicity. Pyridazine is a component of several drug molecules, and the pyridazine pharmacophore has contributed to a variety of pharmacologically active compounds.Application of 19064-65-4
Referemce:
Pyridazine – Wikipedia,
Pyridazine | C4H4N2 – PubChem