Sengmany, Stephane published the artcileSynthesis and biological evaluation of 3-amino-, 3-alkoxy- and 3-aryloxy-6-(hetero)arylpyridazines as potent antitumor agents, Formula: C6H8ClN3, the main research area is aryl pyridazine preparation antitumor toxicity human; chloropyridazine aryl halide electrochem reductive coupling nickel catalyst; Arylpyridazines; Biological evaluation; Cytotoxic activity; Electrosynthesis; Nickel catalysis.
Various 3-amino-6-arylpyridazines I [R = Me2N, pyrrol-1-yl, morpholino, etc.; Ar = C6H5, 3-MeC6H4, 3-thienyl, etc.] and 3-aryloxy- and alkoxy-6-arylpyridazines II [R1 = Et, C6H5, 4-FC6H4, etc.] were synthesized by an electrochem. reductive cross-coupling between chloropyridazines and aryl or heteroaryl halides. In vitro antiproliferative activity of these products I and II was evaluated against a representative panel of cancer cell lines and oncogenicity prevention of the more efficient derivatives was highlighted on human breast cancer cell line MDA-MB 468-Luc prior establishing their interaction with p44/42 and Akt-dependent signaling pathways. The highest in vitro antiproliferative activity was found for compound I [R = Et2N; Ar = 4-MeO2CC6H4] and also showed a potent ability to inhibit clonogenicity of human breast cancer cell line. The toxicity of the most active compounds I [R = Et2N; Ar = 4-MeO2CC6H4, 4-EtO2CC6H4] was further evaluated in vitro on human hepatocytes and in vivo on zebrafish assays.
Bioorganic & Medicinal Chemistry Letters published new progress about Antitumor agents. 7145-60-0 belongs to class pyridazine, name is 6-Chloro-N,N-dimethylpyridazin-3-amine, and the molecular formula is C6H8ClN3, Formula: C6H8ClN3.
Referemce:
Pyridazine – Wikipedia,
Pyridazine | C4H4N2 – PubChem