Downstream synthetic route of 29049-45-4

29049-45-4 6-Chloropyridazin-4-amine 14099144, apyridazine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.29049-45-4,6-Chloropyridazin-4-amine,as a common compound, the synthetic route is as follows.

Synthesis of 5-bromo-3-chloropyridazine. To a solution 6-chloropyridazin-4-amine (2 g, 15 mmol), t-BuONO (2.4 g, 23 mmol) in MeCN (40 mL) was added CuBr2 (5 g, 23 mmol) at 0 C. The resulting mixture was stirred at RT for 16 h and then concentrated in vacuo. The mixture was diluted with EtOAc (50 mL) and added H2O (50 mL). After filtered through celite, the filtrate was extracted with EtOAc (50 mL*3). The combined organic layers were washed with brine, dried over Na2SO4, and concentrated to give the crude product which was purified by silica gel chromatography (PE/EA=20/1) to give 5-bromo-3-chloropyridazine (1.32 g, yield: 43%) as a brown oil. ESI-MS [M+H]+: 192.8, 194.8., 29049-45-4

29049-45-4 6-Chloropyridazin-4-amine 14099144, apyridazine compound, is more and more widely used in various fields.

Reference:
Patent; Shire Human Genetic Therapies, Inc.; Papaioannou, Nikolaos; Fink, Sarah Jocelyn; Miller, Thomas Allen; Shipps, JR., Gerald Wayne; Travins, Jeremy Mark; Ehmann, David Edward; Rae, Alastair; Ellard, John Mark; (352 pag.)US2019/284182; (2019); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem