Synthetic Route of 141-30-0, A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 141-30-0, Name is 3,6-Dichloropyridazine, molecular formula is C4H2Cl2N2. In a Article,once mentioned of 141-30-0
3,8-Diazabicyclo[3.2.1]octane (1), 2,5-diazabicyclo[2.2.1]heptane (2), piperazine (3), and homopiperazine (4) derivatives, substituted at one nitrogen atom with the 6-chloro-3-pyridazinyl group while the other nitrogen atom was either unsubstituted or mono- or dimethylated, were synthesized and tested for their affinity toward the neuronal nicotinic acetylcholine receptors (nAChRs). All of the compounds had Ki values in the nanomolar range. A molecular modeling study allowed location of their preferred conformations, the energies of which were recalculated in water with a continuum solvent model. Some of the compounds showed, in their populated conformations, only pharmacophoric distances longer than the values taken into consideration by the Sheridan model for nAChRs receptors. Thus, this SAR study gives support to the hypothesis that these longer distances are still compatible with affinity for alpha4beta2 receptors in the nanomolar range.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Synthetic Route of 141-30-0. In my other articles, you can also check out more blogs about 141-30-0
Reference:
Pyridazine – Wikipedia,
Pyridazine | C4H4N1926 – PubChem