With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.70952-62-4,3,6-Dichloro-4-methoxypyridazine,as a common compound, the synthetic route is as follows.
5.87 g (39.1 mmol) of 2-tert-butylphenol, dimethylsulfoxide (80 mL) and 4.38 g (39.0 mmol) of potassium t-butoxide were mixed, and the mixture was stirred at room temperature for 20 minutes. To the mixture was added a dimethylsulfoxide solution (60 mL) containing 6.92 g (38.7 mmol) of 3,6-dichloro-4-methoxypyridazine, and the resulting mixture was stirred at room temperature for 40 minutes, and at 80C for 45 minutes. The reaction mixture was poured into a saturated aqueous ammonium chloride solution, and extracted with ethyl acetate. The organic layers were combined, washed with water, and then, with brine, and dried over anhydrous sodium sulfate. The solvent was removed, and the residue was purified by silica gel column chromatography (available from Merck Co., 9385, hexane:ethyl acetate, gradient) to obtain 2.66 g (9.09 mmol, Yield: 23.5%) of 3-(2-tert-butylphenoxy)-6-chloro-4-methoxypyridazine and 1.82 g (6.22 mmol, Yield: 16.1%) of 6-(2-tert-butylphenoxy)-3-chloro-4-methoxypyridazine.
The synthetic route of 70952-62-4 has been constantly updated, and we look forward to future research findings.
Reference£º
Patent; Sankyo Agro Company, Limited; EP1426365; (2004); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem