With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.84956-71-8,2-(tert-Butyl)-4,5-dichloropyridazin-3(2H)-one,as a common compound, the synthetic route is as follows.
A solution of the product of part A (0.105 g, 0.300 mmol) in 2-fluoroethanol (1.75 mL) was treated with 11.4 mg p-toluenesulfonic acid hydrate (0.06 mmol; 20 mol %) in one portion at ambient temperature. After 24 h, all volatiles were removed in vacuo, and the residue directly purified by chromatography on silica (30*185 mm) using 4:1 hexanes/ethyl acetate. The main product peak eluting 360-450 mL was collected, pooled and concentrated in vacuo to a colorless oil (81.2 mg, 0.205 mmol; 68.3%). 1H NMR: (300 MHz, DMSO-d6) delta 8.28 (1H, s), 7.55-7.39 (4H, m), 5.44 (2H, s), 4.62-4.52 (1H, m), 4.47-4.36 (1H, m), 3.46-3.34 (1H, m), 3.36-3.25 (1H, m), 1.58 (9H, s), 1.49 (6H, s). 19F NMR: (282 MHz, DMSO-d6) delta -222.01 (1F, tt, J=47.8, 30.6 Hz). 13C NMR: (75 MHz, DMSO-d6) delta 157.8, 153.9, 146.3, 133.9, 127.7, 126.1, 125.8, 115.5, 83.17 (d, J=166.3 Hz), 76.3, 71.2, 65.3, 61.89 (d, J=19.2 Hz), 28.0, 27.4. HRMS Calcd. for C20H2635ClFN2O3 (M+H): 397.1689. found: 397.1695. TLC: Rf 0.51 (silica gel, 3:2 hexanes/ethyl acetate, uv).
84956-71-8 2-(tert-Butyl)-4,5-dichloropyridazin-3(2H)-one 2782225, apyridazine compound, is more and more widely used in various.
Reference£º
Patent; Lantheus Medical Imaging, Inc.; Cesati, Richard R.; Radeke, Heike S.; Pandey, Suresh K.; Purohit, Ajay; Robinson, Simon P.; US2015/196672; (2015); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem