Downstream synthetic route of 29049-45-4

29049-45-4 6-Chloropyridazin-4-amine 14099144, apyridazine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.29049-45-4,6-Chloropyridazin-4-amine,as a common compound, the synthetic route is as follows.

Synthesis of 5-bromo-3-chloropyridazine. To a solution 6-chloropyridazin-4-amine (2 g, 15 mmol), t-BuONO (2.4 g, 23 mmol) in MeCN (40 mL) was added CuBr2 (5 g, 23 mmol) at 0 C. The resulting mixture was stirred at RT for 16 h and then concentrated in vacuo. The mixture was diluted with EtOAc (50 mL) and added H2O (50 mL). After filtered through celite, the filtrate was extracted with EtOAc (50 mL*3). The combined organic layers were washed with brine, dried over Na2SO4, and concentrated to give the crude product which was purified by silica gel chromatography (PE/EA=20/1) to give 5-bromo-3-chloropyridazine (1.32 g, yield: 43%) as a brown oil. ESI-MS [M+H]+: 192.8, 194.8., 29049-45-4

29049-45-4 6-Chloropyridazin-4-amine 14099144, apyridazine compound, is more and more widely used in various fields.

Reference:
Patent; Shire Human Genetic Therapies, Inc.; Papaioannou, Nikolaos; Fink, Sarah Jocelyn; Miller, Thomas Allen; Shipps, JR., Gerald Wayne; Travins, Jeremy Mark; Ehmann, David Edward; Rae, Alastair; Ellard, John Mark; (352 pag.)US2019/284182; (2019); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Brief introduction of 108784-42-5

108784-42-5, The synthetic route of 108784-42-5 has been constantly updated, and we look forward to future research findings.

108784-42-5, 6-Fluoropyridazin-3-amine is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

6-Fiuoro-pyridazin-3-ylamine [108784-42-5] (10 g, 89 mmol) was combined with a 50% (wjv)aqueous solution of chloroacetaldehyde [107-20-0] (23 ml, 177 mmol) inn-butanol (150 ml) and stirred at reflux for 1h. The cooled reaction solution was reduced in volume and diluted with diethylether to precipitate a brown solid, which was collected by filtration, to yield 12.0 g. LRMS (ESI) mjz138.0 [(M+H)J+, calc’d for CGH4FN3: 137.12.

108784-42-5, The synthetic route of 108784-42-5 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; LEXICON PHARMACEUTICALS, INC.; BI, Yingzhi; CARSON, Kenneth Gordon; CIANCHETTA, Giovanni; GREEN, Michael Alan; KUMI, Godwin; LIANG, Zhi; LIU, Ying Jade; MAIN, Alan; ZHANG, Yulian; ZIPP, Glenn Gregory; WO2013/134219; (2013); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 33097-39-1

33097-39-1, As the paragraph descriping shows that 33097-39-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.33097-39-1,3,6-Difluoropyridazine,as a common compound, the synthetic route is as follows.

(1) A mixture of 3,6-difluoropyridazine (7.8 g) and 25 ml of concentrated ammonium hydroxide solution is heated in a sealed tube for 2 hours at 70 C. After cooling, the crystals separated are filtered and washed with water to give 4 g of 3-amino-6-fluoropyridazine. NMR spectrum (d6 -DMSO)delta: 6.23 (2H, br. s), 7-7.2 (2H, m).

33097-39-1, As the paragraph descriping shows that 33097-39-1 is playing an increasingly important role.

Reference:
Patent; Takeda Chemical Industries, Ltd.; US4864022; (1989); A;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 1632-74-2

1632-74-2, As the paragraph descriping shows that 1632-74-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1632-74-2,3,6-Dimethylpyridazine,as a common compound, the synthetic route is as follows.

Step B: A mixture of 3,6-dimethylpyridazine (81 mg, 0.75 mmol) and 3-(2-bromoacetyl)-7-fluoro-2H-chromen-2-one (143 mg, 0.5 mmol, prepared in Example 36, Part 2) in anhydrous CH3CN (1 mL) was stirred at room temperature for 5 d in a sealed tube to afford 1-(2-(7-fluoro-2-oxo-2H-chromen-3-yl)-2-oxoethyl)-3,6-dimethylpyridazin-1-ium bromide as a crude mixture in CH3CN.

1632-74-2, As the paragraph descriping shows that 1632-74-2 is playing an increasingly important role.

Reference:
Patent; PTC Therapeutics, Inc.; F. Hoffmann-La Roche AG; Woll, Matthew G.; Chen, Guangming; Choi, Soongyu; Dakka, Amal; Huang, Song; Karp, Gary Mitchell; Lee, Chang-Sun; Li, Chunshi; Narasimhan, Jana; Naryshkin, Nikolai; Paushkin, Sergey; Qi, Hongyan; Turpoff, Anthony A.; Weetall, Marla L.; Welch, Ellen; Yang, Tianle; Zhang, Nanjing; Zhang, Xiaoyan; Zhao, Xin; Pinard, Emmanuel; Ratni, Hasane; (317 pag.)US9617268; (2017); B2;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Analyzing the synthesis route of 57041-95-9

As the paragraph descriping shows that 57041-95-9 is playing an increasingly important role.

57041-95-9, 6-Aminopyridazin-3(2H)-one is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

57041-95-9, Step 32.1: 6-amino-2-methylpyridazin-3(2H)-one A mixture of 6-aminopyridazin-3-ol (2 g, 18.00 mmol), NaOH (0.720 g, 18.00 mmol) and MeI (1.126 mL, 18.00 mmol) was stirred for 2.5 hr at 85 C. under Ar. The reaction mixture was concentrated. The crude material was purified by silica gel column chromatography (NH3 1%/CH2Cl2/MeOH 4-7%) to afford the title product (538 mg, 4.30 mmol, 24% yield) as a yellow solid. tR: 0.25 min (LC-MS 2); ESI-MS: 126 [M+H]+ (LC-MS 2); Rf=0.36 (CH2Cl2/MeOH 9:1).

As the paragraph descriping shows that 57041-95-9 is playing an increasingly important role.

Reference:
Patent; NOVARTIS AG; BLANK, Jutta; BORDAS, Vincent; COTESTA, Simona; GUAGNANO, Vito; RUEEGER, Heinrich; VAUPEL, Andrea; US2014/349990; (2014); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Brief introduction of 1352925-63-3

The synthetic route of 1352925-63-3 has been constantly updated, and we look forward to future research findings.

1352925-63-3, Ethyl 4,6-dihydroxypyridazine-3-carboxylate is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

1352925-63-3, To a glass lined reactor were charged toluene (0 26 kg), sulfolane (3.4 kg), Compound 1 (1.0 kg) and PQCh (2.7 kg). The crude was cooled to 0 C. Triethylamine (0.89 kg) was charged, and the resulting crude mixture was heated to 65 C and aged till the reaction reached completion. The reaction mass was cooled to 5 C. In a separate reactor, water (7.5 kg) was charged and cooled to 5 C The reaction mass was added slowly to the water solution, maintaining the internal temperature below 5 C. Additional water (0 5 kg) was used to rinse the reactor and aid the transfer. The resulting mixture was agitated at 5 C for 3 hours, then extracted with MTBE three times (3 x 4 5 kg). The combined organic layers were washed sequentially with aqueous pH 7 buffer solution (5.0 L/kg, 15 wt% KH2PO4/K2HPO4) and ‘ater (2.5 kg). The erode was distilled under vacuum until total volume became approximately 3 L/kg ACN (2 x 6 3 kg) was added followed by additional distillations back to -3 L/kg. The crude was cooled to 20 C to afford Compound 2 as a 30-36 wt% solution in 90-95% yield.

The synthetic route of 1352925-63-3 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; BRISTOL-MYERS SQUIBB COMPANY; ROBERTS, Daniel Richard; (0 pag.)WO2019/232138; (2019); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 1834-27-1

1834-27-1 6-Chloro-4-methylpyridazin-3(2H)-one 164886, apyridazine compound, is more and more widely used in various fields.

1834-27-1, 6-Chloro-4-methylpyridazin-3(2H)-one is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Intermediate VIII6-Chloro-2,4-dimethyl-2H-pyridazin-3-one Methyl iodide (1.3 mL) was added to a mixture of 6-chloro-4-methyl-2H-pyridazin-3-one (2.70 g) and K2CO3 (3.40 g) in N,N-dimethylformamide (27 mL). The resulting mixture was stirred at ambient temperature overnight. Then, water was added and the mixture was extracted with ethyl acetate. The combined organic extracts were washed with water and brine and dried (MgSO4). After removal of the solvent, the title compound was obtained as a solid.Yield: 2.97 g (100% of theory); Mass spectrum (ESI+): m/z=159/161 (Cl) [M+H]+., 1834-27-1

1834-27-1 6-Chloro-4-methylpyridazin-3(2H)-one 164886, apyridazine compound, is more and more widely used in various fields.

Reference:
Patent; VITAE PHARMACEUTICALS, INC.; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; US2012/108578; (2012); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 36725-28-7

The synthetic route of 36725-28-7 has been constantly updated, and we look forward to future research findings.

36725-28-7, 6-(4-Aminophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

EXAMPLE 16 (R)-5-Methyl-6-[4-(4-oxo-1,4-dihydropyridin-1-yl)phenyl]-4,5-dihydro-3(2H)-pyridazinone A mixture of (R)-6-(4-aminophenyl)-5-methyl-4,5-dihydro-3(2H)-pyridazinone (100 mg), 4H-pyran-4-one (52 mg) and hydrochloric acid (0.1N, 1 ml) in water (1.3 ml) was stirred under reflux under nitrogen for 3 hours. Aqueous ammonia (880, 0.01 ml) was added to the cooled reaction mixture to afford the title compound which was collected, washed with water and dried, 91 mg, m.p. 257-8 C. (softens 120 C.), [alpha]D25 =-369.5 (1.07% in dimethylformamide)., 36725-28-7

The synthetic route of 36725-28-7 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Smith Kline & French Laboratories Limited; US4906628; (1990); A;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

Downstream synthetic route of 1352925-63-3

As the paragraph descriping shows that 1352925-63-3 is playing an increasingly important role.

1352925-63-3, Ethyl 4,6-dihydroxypyridazine-3-carboxylate is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

[0177j A mixture 5-5 (3.38 g, 18.3 mmol) in POC13 (35 ml) was heated at 95 C for 5 hr.The excess POC13 was removed under vacuum, to the residue ice was added followed byethyl acetate. The organic phase was separated, washed with 5% NaHCO3, dried over Na2SO4, and concentrated to give compound 5-6 as an oil (3.27 g), 1352925-63-3

As the paragraph descriping shows that 1352925-63-3 is playing an increasingly important role.

Reference:
Patent; PORTOLA PHARMACEUTICALS, INC.; XU, Qing; SONG, Yonghong; PANDEY, Anjali; WO2015/123453; (2015); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem

 

New learning discoveries about 65632-62-4

The synthetic route of 65632-62-4 has been constantly updated, and we look forward to future research findings.

65632-62-4,65632-62-4, (S)-1-((Benzyloxy)carbonyl)hexahydropyridazine-3-carboxylic acid is a pyridazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step A: Preparation of l-(phenylmethyl) hydrogen tetrahydro-2-nitrosopyridazine-1 ,(35)(2H)-dicarboxylateA solution of sodium nitrite (1.03 g, 15.0 mmol) in 8 rnL of water was added dropwise over 10 minutes to a suspension of l-(phenylmethyl) hydrogen tetrahydropyridazine-l,(35)(2H)-dicarboxylate (2.64 g, 10.0 mmol; prepared as described inCoats et al. J. Org. Chem. 2004, 69, 1734) in 1 N hydrochloric acid (30 mL) at 4 0C. After3.5 h the reaction mixture was diluted with ethyl acetate (40 mL), and the layers were separated. The aqueous layer was extracted with ethyl acetate (2 X 20 mL), and the combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure to give 3.14 g of the title compound as a yellow oil. This compound was carried on without further purification or characterization.

The synthetic route of 65632-62-4 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; E.I. DU PONT DE NEMOURS AND COMPANY; WO2009/76440; (2009); A2;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem