Synthetic Route of 141-30-0, A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 141-30-0, Name is 3,6-Dichloropyridazine, molecular formula is C4H2Cl2N2. In a Patent,once mentioned of 141-30-0
Compounds of the formula STR1 wherein: R1 and R2 are independently hydrogen, halo, alkyl, alkenyl, alkoxy, hydroxy, hydroxyalkyl, hydroxyhaloalkyl, alkoxyalkyl, alkylthioalkynyl, hydroxyalkoxy, alkylthioalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, amino, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, alkoxycarbonyl, carboxy or cyanomethyl, nitro, difluoromethyl, trifluoromethyl or cyano; Y is alkylene of 3 to 9 carbon atoms; R3 and R4 are independently hydrogen, alkyl, alkoxy, hydroxy, cycloalkyl, hydroxyalkyl, hydroxyhaloalkyl, alkoxyalkyl, hydroxyalkoxy, alkylthioalkyl, alkanoyl, alkanoyloxy, alkylsulfinylalkyl, alkylsulfonylalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, alkoxycarbonyl, carboxy, cyanomethyl, fluoroalkyl, cyano, phenyl, alkynyl, alkene, or halo; R5 is alkoxycarbonyl, alkyltetrazolyl, phenyl or a heterocycle; or a pharmaceutically acceptable acid addition salts thereof; N-oxides thereof, are useful as antipirconaviral agents.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Synthetic Route of 141-30-0. In my other articles, you can also check out more blogs about 141-30-0
Reference:
Pyridazine – Wikipedia,
Pyridazine | C4H4N1202 – PubChem