With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1722-10-7,3-Chloro-6-methoxypyridazine,as a common compound, the synthetic route is as follows.
A solution of 2,2,6,6-tetramethylpiperidine (12.9 ml, 76.1 mmol) in THF (100 mL) was sparged with N2(g) then cooled to -78 C. The -78 C solution was treated slowly with 2.5 M n-butyllithium in hexane (30.4 mL, 76.1 mmol) then warmed to 0 C and stirred for 1 h. The resulting reaction mixture was cooled to -78 C then treated with a 0.46 M solution of 3-Chloro-6-methoxypyridazine in THF (75 mL, 34.6 mmol). After stirring at -78 C for 1 h, the reaction mixture was treated with iodomethane (4.74 mL, 76.1 mmol), and stirred for an additional 30 mm at -78 C. The reaction mixture was quenched with saturated NH4C1(aq) (50 mL), warmed to ambient temperature, diluted with water (50 mL) and extracted with EtOAc (2 x 250 mL). The combined organic extracts were washed with brine (1 x 50 mL), dried over anhydrous Na2SO4(), filtered and concentrated under vacuum to afford the title compound (3.31 g, 60% yield). MS (apci) m/z = 159.0 (M+H).
1722-10-7, 1722-10-7 3-Chloro-6-methoxypyridazine 74403, apyridazine compound, is more and more widely used in various fields.
Reference£º
Patent; ARRAY BIOPHARMA, INC.; ANDREWS, Steven W.; BLAKE, James F.; COOK, Adam; GUNAWARDANA, Indrani W.; HUNT, Kevin W.; METCALF, Andrew T.; MORENO, David; REN, Li; TANG, Tony P.; (263 pag.)WO2017/70708; (2017); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem