With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.141-30-0,3,6-Dichloropyridazine,as a common compound, the synthetic route is as follows.
Synthesis of Compound J.1. A flask was charged with 3,6-dichloropyridazine (1.49 g, 0.01 mol, 1.0 equiv), silver nitrate (0.17 g, 0.001 mol, 0.1 equiv), water (30 mL), pivalic acid (3.57 g, 0.035 mol, 3.5 equiv), and sulfuric acid (1.6 mL, 0.03 mol, 3.0 equiv). The mixture was heated to 70 C. and a solution of ammonium persulfate (2.28 g, 0.01 mol, 1.0 equiv) in water (10 mL) was added dropwise over ten minutes. The reaction was stirred at 70 C. for one hour and then cooled to RT. The reaction mixture was poured into ice water and then adjusted to pH 8 with aqueous ammonium hydroxide. The aqueous mixture was extracted with CH2Cl2 (2¡Á250 mL). The combined organic extracts were filtered through a cotton plug, washed with aqueous 1 N NaOH (70 mL), dried over anhydrous MgSO4 and concentrated under reduced pressure. Purification by flash column chromatography (20% EtOAc/hexanes) afforded the title compound (1.32 g, 64%) as a white solid. 1H NMR: (CDCl3, 400 MHz) delta: 7.5 (s, 1H), 1.5 (s, 9H); Rf=0.5 (80% EtOAc/hexanes)., 141-30-0
As the paragraph descriping shows that 141-30-0 is playing an increasingly important role.
Reference£º
Patent; Sunesis Pharmaceuticals, Inc; US2009/5359; (2009); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem