Analyzing the synthesis route of 1121-79-5

The synthetic route of 1121-79-5 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1121-79-5,3-Chloro-6-methylpyridazine,as a common compound, the synthetic route is as follows.

Intermediate A1 3-Methyl-6-[4-(methylsulfonyl)phenyl]pyridazineA suspension of 3-chloro-6-methylpyridazine (1.0 g, 7.78 mmol), (4-methylsulfonyl-phenyl)boronic acid (1.71 g, 8.56 mmol), Pd(PPh3)4 (450 mg, 0.39 mmol), potassium carbonate (2.69 g, 19.45 mmol) in 1,4-dioxane (25 mL) and water (5 mL) was heated at 95 C. overnight. Upon evaporation of the solvents, the residue was partitioned between water (150 mL) and chloroform (150 mL). The layers were separated and the water phase was extracted with chloroform (2 100 mL). The combined organic layers were evaporated and purified by flash chromatography (1:1 DCM/EtOAc, then 100% EtOAc). Yield 1.36 g (70%); Analytical HPLC: purity 99% (System A, RT=1.04 min); LRESIMS for C12H12N2O2S m/z 249 (M+H)+.

The synthetic route of 1121-79-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Biovitrum; US2008/58339; (2008); A1;,
Pyridazine – Wikipedia
Pyridazine | C4H4N2 – PubChem